1 /* $OpenBSD: sshkey.c,v 1.113 2021/01/15 04:31:25 dtucker Exp $ */
2 /*
3 * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
4 * Copyright (c) 2008 Alexander von Gernler. All rights reserved.
5 * Copyright (c) 2010,2011 Damien Miller. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "includes.h"
29
30 #include <sys/types.h>
31 #include <netinet/in.h>
32
33 #ifdef WITH_OPENSSL
34 #include <openssl/evp.h>
35 #include <openssl/err.h>
36 #include <openssl/pem.h>
37 #endif
38
39 #include "crypto_api.h"
40
41 #include <errno.h>
42 #include <limits.h>
43 #include <stdio.h>
44 #include <string.h>
45 #include <resolv.h>
46 #include <time.h>
47 #ifdef HAVE_UTIL_H
48 #include <util.h>
49 #endif /* HAVE_UTIL_H */
50
51 #include "ssh2.h"
52 #include "ssherr.h"
53 #include "misc.h"
54 #include "sshbuf.h"
55 #include "cipher.h"
56 #include "digest.h"
57 #define SSHKEY_INTERNAL
58 #include "sshkey.h"
59 #include "match.h"
60 #include "ssh-sk.h"
61
62 #ifdef WITH_XMSS
63 #include "sshkey-xmss.h"
64 #include "xmss_fast.h"
65 #endif
66
67 #include "openbsd-compat/openssl-compat.h"
68
69 /* openssh private key file format */
70 #define MARK_BEGIN "-----BEGIN OPENSSH PRIVATE KEY-----\n"
71 #define MARK_END "-----END OPENSSH PRIVATE KEY-----\n"
72 #define MARK_BEGIN_LEN (sizeof(MARK_BEGIN) - 1)
73 #define MARK_END_LEN (sizeof(MARK_END) - 1)
74 #define KDFNAME "bcrypt"
75 #define AUTH_MAGIC "openssh-key-v1"
76 #define SALT_LEN 16
77 #define DEFAULT_CIPHERNAME "aes256-ctr"
78 #define DEFAULT_ROUNDS 16
79
80 /* Version identification string for SSH v1 identity files. */
81 #define LEGACY_BEGIN "SSH PRIVATE KEY FILE FORMAT 1.1\n"
82
83 /*
84 * Constants relating to "shielding" support; protection of keys expected
85 * to remain in memory for long durations
86 */
87 #define SSHKEY_SHIELD_PREKEY_LEN (16 * 1024)
88 #define SSHKEY_SHIELD_CIPHER "aes256-ctr" /* XXX want AES-EME* */
89 #define SSHKEY_SHIELD_PREKEY_HASH SSH_DIGEST_SHA512
90
91 int sshkey_private_serialize_opt(struct sshkey *key,
92 struct sshbuf *buf, enum sshkey_serialize_rep);
93 static int sshkey_from_blob_internal(struct sshbuf *buf,
94 struct sshkey **keyp, int allow_cert);
95
96 /* Supported key types */
97 struct keytype {
98 const char *name;
99 const char *shortname;
100 const char *sigalg;
101 int type;
102 int nid;
103 int cert;
104 int sigonly;
105 };
106 static const struct keytype keytypes[] = {
107 { "ssh-ed25519", "ED25519", NULL, KEY_ED25519, 0, 0, 0 },
108 { "ssh-ed25519-cert-v01@openssh.com", "ED25519-CERT", NULL,
109 KEY_ED25519_CERT, 0, 1, 0 },
110 { "sk-ssh-ed25519@openssh.com", "ED25519-SK", NULL,
111 KEY_ED25519_SK, 0, 0, 0 },
112 { "sk-ssh-ed25519-cert-v01@openssh.com", "ED25519-SK-CERT", NULL,
113 KEY_ED25519_SK_CERT, 0, 1, 0 },
114 #ifdef WITH_XMSS
115 { "ssh-xmss@openssh.com", "XMSS", NULL, KEY_XMSS, 0, 0, 0 },
116 { "ssh-xmss-cert-v01@openssh.com", "XMSS-CERT", NULL,
117 KEY_XMSS_CERT, 0, 1, 0 },
118 #endif /* WITH_XMSS */
119 #ifdef WITH_OPENSSL
120 { "ssh-rsa", "RSA", NULL, KEY_RSA, 0, 0, 0 },
121 { "rsa-sha2-256", "RSA", NULL, KEY_RSA, 0, 0, 1 },
122 { "rsa-sha2-512", "RSA", NULL, KEY_RSA, 0, 0, 1 },
123 { "ssh-dss", "DSA", NULL, KEY_DSA, 0, 0, 0 },
124 # ifdef OPENSSL_HAS_ECC
125 { "ecdsa-sha2-nistp256", "ECDSA", NULL,
126 KEY_ECDSA, NID_X9_62_prime256v1, 0, 0 },
127 { "ecdsa-sha2-nistp384", "ECDSA", NULL,
128 KEY_ECDSA, NID_secp384r1, 0, 0 },
129 # ifdef OPENSSL_HAS_NISTP521
130 { "ecdsa-sha2-nistp521", "ECDSA", NULL,
131 KEY_ECDSA, NID_secp521r1, 0, 0 },
132 # endif /* OPENSSL_HAS_NISTP521 */
133 { "sk-ecdsa-sha2-nistp256@openssh.com", "ECDSA-SK", NULL,
134 KEY_ECDSA_SK, NID_X9_62_prime256v1, 0, 0 },
135 { "webauthn-sk-ecdsa-sha2-nistp256@openssh.com", "ECDSA-SK", NULL,
136 KEY_ECDSA_SK, NID_X9_62_prime256v1, 0, 1 },
137 # endif /* OPENSSL_HAS_ECC */
138 { "ssh-rsa-cert-v01@openssh.com", "RSA-CERT", NULL,
139 KEY_RSA_CERT, 0, 1, 0 },
140 { "rsa-sha2-256-cert-v01@openssh.com", "RSA-CERT",
141 "rsa-sha2-256", KEY_RSA_CERT, 0, 1, 1 },
142 { "rsa-sha2-512-cert-v01@openssh.com", "RSA-CERT",
143 "rsa-sha2-512", KEY_RSA_CERT, 0, 1, 1 },
144 { "ssh-dss-cert-v01@openssh.com", "DSA-CERT", NULL,
145 KEY_DSA_CERT, 0, 1, 0 },
146 # ifdef OPENSSL_HAS_ECC
147 { "ecdsa-sha2-nistp256-cert-v01@openssh.com", "ECDSA-CERT", NULL,
148 KEY_ECDSA_CERT, NID_X9_62_prime256v1, 1, 0 },
149 { "ecdsa-sha2-nistp384-cert-v01@openssh.com", "ECDSA-CERT", NULL,
150 KEY_ECDSA_CERT, NID_secp384r1, 1, 0 },
151 # ifdef OPENSSL_HAS_NISTP521
152 { "ecdsa-sha2-nistp521-cert-v01@openssh.com", "ECDSA-CERT", NULL,
153 KEY_ECDSA_CERT, NID_secp521r1, 1, 0 },
154 # endif /* OPENSSL_HAS_NISTP521 */
155 { "sk-ecdsa-sha2-nistp256-cert-v01@openssh.com", "ECDSA-SK-CERT", NULL,
156 KEY_ECDSA_SK_CERT, NID_X9_62_prime256v1, 1, 0 },
157 # endif /* OPENSSL_HAS_ECC */
158 #endif /* WITH_OPENSSL */
159 { NULL, NULL, NULL, -1, -1, 0, 0 }
160 };
161
162 const char *
sshkey_type(const struct sshkey * k)163 sshkey_type(const struct sshkey *k)
164 {
165 const struct keytype *kt;
166
167 for (kt = keytypes; kt->type != -1; kt++) {
168 if (kt->type == k->type)
169 return kt->shortname;
170 }
171 return "unknown";
172 }
173
174 static const char *
sshkey_ssh_name_from_type_nid(int type,int nid)175 sshkey_ssh_name_from_type_nid(int type, int nid)
176 {
177 const struct keytype *kt;
178
179 for (kt = keytypes; kt->type != -1; kt++) {
180 if (kt->type == type && (kt->nid == 0 || kt->nid == nid))
181 return kt->name;
182 }
183 return "ssh-unknown";
184 }
185
186 int
sshkey_type_is_cert(int type)187 sshkey_type_is_cert(int type)
188 {
189 const struct keytype *kt;
190
191 for (kt = keytypes; kt->type != -1; kt++) {
192 if (kt->type == type)
193 return kt->cert;
194 }
195 return 0;
196 }
197
198 const char *
sshkey_ssh_name(const struct sshkey * k)199 sshkey_ssh_name(const struct sshkey *k)
200 {
201 return sshkey_ssh_name_from_type_nid(k->type, k->ecdsa_nid);
202 }
203
204 const char *
sshkey_ssh_name_plain(const struct sshkey * k)205 sshkey_ssh_name_plain(const struct sshkey *k)
206 {
207 return sshkey_ssh_name_from_type_nid(sshkey_type_plain(k->type),
208 k->ecdsa_nid);
209 }
210
211 int
sshkey_type_from_name(const char * name)212 sshkey_type_from_name(const char *name)
213 {
214 const struct keytype *kt;
215
216 for (kt = keytypes; kt->type != -1; kt++) {
217 /* Only allow shortname matches for plain key types */
218 if ((kt->name != NULL && strcmp(name, kt->name) == 0) ||
219 (!kt->cert && strcasecmp(kt->shortname, name) == 0))
220 return kt->type;
221 }
222 return KEY_UNSPEC;
223 }
224
225 static int
key_type_is_ecdsa_variant(int type)226 key_type_is_ecdsa_variant(int type)
227 {
228 switch (type) {
229 case KEY_ECDSA:
230 case KEY_ECDSA_CERT:
231 case KEY_ECDSA_SK:
232 case KEY_ECDSA_SK_CERT:
233 return 1;
234 }
235 return 0;
236 }
237
238 int
sshkey_ecdsa_nid_from_name(const char * name)239 sshkey_ecdsa_nid_from_name(const char *name)
240 {
241 const struct keytype *kt;
242
243 for (kt = keytypes; kt->type != -1; kt++) {
244 if (!key_type_is_ecdsa_variant(kt->type))
245 continue;
246 if (kt->name != NULL && strcmp(name, kt->name) == 0)
247 return kt->nid;
248 }
249 return -1;
250 }
251
252 char *
sshkey_alg_list(int certs_only,int plain_only,int include_sigonly,char sep)253 sshkey_alg_list(int certs_only, int plain_only, int include_sigonly, char sep)
254 {
255 char *tmp, *ret = NULL;
256 size_t nlen, rlen = 0;
257 const struct keytype *kt;
258
259 for (kt = keytypes; kt->type != -1; kt++) {
260 if (kt->name == NULL)
261 continue;
262 if (!include_sigonly && kt->sigonly)
263 continue;
264 if ((certs_only && !kt->cert) || (plain_only && kt->cert))
265 continue;
266 if (ret != NULL)
267 ret[rlen++] = sep;
268 nlen = strlen(kt->name);
269 if ((tmp = realloc(ret, rlen + nlen + 2)) == NULL) {
270 free(ret);
271 return NULL;
272 }
273 ret = tmp;
274 memcpy(ret + rlen, kt->name, nlen + 1);
275 rlen += nlen;
276 }
277 return ret;
278 }
279
280 int
sshkey_names_valid2(const char * names,int allow_wildcard)281 sshkey_names_valid2(const char *names, int allow_wildcard)
282 {
283 char *s, *cp, *p;
284 const struct keytype *kt;
285 int type;
286
287 if (names == NULL || strcmp(names, "") == 0)
288 return 0;
289 if ((s = cp = strdup(names)) == NULL)
290 return 0;
291 for ((p = strsep(&cp, ",")); p && *p != '\0';
292 (p = strsep(&cp, ","))) {
293 type = sshkey_type_from_name(p);
294 if (type == KEY_UNSPEC) {
295 if (allow_wildcard) {
296 /*
297 * Try matching key types against the string.
298 * If any has a positive or negative match then
299 * the component is accepted.
300 */
301 for (kt = keytypes; kt->type != -1; kt++) {
302 if (match_pattern_list(kt->name,
303 p, 0) != 0)
304 break;
305 }
306 if (kt->type != -1)
307 continue;
308 }
309 free(s);
310 return 0;
311 }
312 }
313 free(s);
314 return 1;
315 }
316
317 u_int
sshkey_size(const struct sshkey * k)318 sshkey_size(const struct sshkey *k)
319 {
320 #ifdef WITH_OPENSSL
321 const BIGNUM *rsa_n, *dsa_p;
322 #endif /* WITH_OPENSSL */
323
324 switch (k->type) {
325 #ifdef WITH_OPENSSL
326 case KEY_RSA:
327 case KEY_RSA_CERT:
328 if (k->rsa == NULL)
329 return 0;
330 RSA_get0_key(k->rsa, &rsa_n, NULL, NULL);
331 return BN_num_bits(rsa_n);
332 case KEY_DSA:
333 case KEY_DSA_CERT:
334 if (k->dsa == NULL)
335 return 0;
336 DSA_get0_pqg(k->dsa, &dsa_p, NULL, NULL);
337 return BN_num_bits(dsa_p);
338 case KEY_ECDSA:
339 case KEY_ECDSA_CERT:
340 case KEY_ECDSA_SK:
341 case KEY_ECDSA_SK_CERT:
342 return sshkey_curve_nid_to_bits(k->ecdsa_nid);
343 #endif /* WITH_OPENSSL */
344 case KEY_ED25519:
345 case KEY_ED25519_CERT:
346 case KEY_ED25519_SK:
347 case KEY_ED25519_SK_CERT:
348 case KEY_XMSS:
349 case KEY_XMSS_CERT:
350 return 256; /* XXX */
351 }
352 return 0;
353 }
354
355 static int
sshkey_type_is_valid_ca(int type)356 sshkey_type_is_valid_ca(int type)
357 {
358 switch (type) {
359 case KEY_RSA:
360 case KEY_DSA:
361 case KEY_ECDSA:
362 case KEY_ECDSA_SK:
363 case KEY_ED25519:
364 case KEY_ED25519_SK:
365 case KEY_XMSS:
366 return 1;
367 default:
368 return 0;
369 }
370 }
371
372 int
sshkey_is_cert(const struct sshkey * k)373 sshkey_is_cert(const struct sshkey *k)
374 {
375 if (k == NULL)
376 return 0;
377 return sshkey_type_is_cert(k->type);
378 }
379
380 int
sshkey_is_sk(const struct sshkey * k)381 sshkey_is_sk(const struct sshkey *k)
382 {
383 if (k == NULL)
384 return 0;
385 switch (sshkey_type_plain(k->type)) {
386 case KEY_ECDSA_SK:
387 case KEY_ED25519_SK:
388 return 1;
389 default:
390 return 0;
391 }
392 }
393
394 /* Return the cert-less equivalent to a certified key type */
395 int
sshkey_type_plain(int type)396 sshkey_type_plain(int type)
397 {
398 switch (type) {
399 case KEY_RSA_CERT:
400 return KEY_RSA;
401 case KEY_DSA_CERT:
402 return KEY_DSA;
403 case KEY_ECDSA_CERT:
404 return KEY_ECDSA;
405 case KEY_ECDSA_SK_CERT:
406 return KEY_ECDSA_SK;
407 case KEY_ED25519_CERT:
408 return KEY_ED25519;
409 case KEY_ED25519_SK_CERT:
410 return KEY_ED25519_SK;
411 case KEY_XMSS_CERT:
412 return KEY_XMSS;
413 default:
414 return type;
415 }
416 }
417
418 #ifdef WITH_OPENSSL
419 /* XXX: these are really begging for a table-driven approach */
420 int
sshkey_curve_name_to_nid(const char * name)421 sshkey_curve_name_to_nid(const char *name)
422 {
423 if (strcmp(name, "nistp256") == 0)
424 return NID_X9_62_prime256v1;
425 else if (strcmp(name, "nistp384") == 0)
426 return NID_secp384r1;
427 # ifdef OPENSSL_HAS_NISTP521
428 else if (strcmp(name, "nistp521") == 0)
429 return NID_secp521r1;
430 # endif /* OPENSSL_HAS_NISTP521 */
431 else
432 return -1;
433 }
434
435 u_int
sshkey_curve_nid_to_bits(int nid)436 sshkey_curve_nid_to_bits(int nid)
437 {
438 switch (nid) {
439 case NID_X9_62_prime256v1:
440 return 256;
441 case NID_secp384r1:
442 return 384;
443 # ifdef OPENSSL_HAS_NISTP521
444 case NID_secp521r1:
445 return 521;
446 # endif /* OPENSSL_HAS_NISTP521 */
447 default:
448 return 0;
449 }
450 }
451
452 int
sshkey_ecdsa_bits_to_nid(int bits)453 sshkey_ecdsa_bits_to_nid(int bits)
454 {
455 switch (bits) {
456 case 256:
457 return NID_X9_62_prime256v1;
458 case 384:
459 return NID_secp384r1;
460 # ifdef OPENSSL_HAS_NISTP521
461 case 521:
462 return NID_secp521r1;
463 # endif /* OPENSSL_HAS_NISTP521 */
464 default:
465 return -1;
466 }
467 }
468
469 const char *
sshkey_curve_nid_to_name(int nid)470 sshkey_curve_nid_to_name(int nid)
471 {
472 switch (nid) {
473 case NID_X9_62_prime256v1:
474 return "nistp256";
475 case NID_secp384r1:
476 return "nistp384";
477 # ifdef OPENSSL_HAS_NISTP521
478 case NID_secp521r1:
479 return "nistp521";
480 # endif /* OPENSSL_HAS_NISTP521 */
481 default:
482 return NULL;
483 }
484 }
485
486 int
sshkey_ec_nid_to_hash_alg(int nid)487 sshkey_ec_nid_to_hash_alg(int nid)
488 {
489 int kbits = sshkey_curve_nid_to_bits(nid);
490
491 if (kbits <= 0)
492 return -1;
493
494 /* RFC5656 section 6.2.1 */
495 if (kbits <= 256)
496 return SSH_DIGEST_SHA256;
497 else if (kbits <= 384)
498 return SSH_DIGEST_SHA384;
499 else
500 return SSH_DIGEST_SHA512;
501 }
502 #endif /* WITH_OPENSSL */
503
504 static void
cert_free(struct sshkey_cert * cert)505 cert_free(struct sshkey_cert *cert)
506 {
507 u_int i;
508
509 if (cert == NULL)
510 return;
511 sshbuf_free(cert->certblob);
512 sshbuf_free(cert->critical);
513 sshbuf_free(cert->extensions);
514 free(cert->key_id);
515 for (i = 0; i < cert->nprincipals; i++)
516 free(cert->principals[i]);
517 free(cert->principals);
518 sshkey_free(cert->signature_key);
519 free(cert->signature_type);
520 freezero(cert, sizeof(*cert));
521 }
522
523 static struct sshkey_cert *
cert_new(void)524 cert_new(void)
525 {
526 struct sshkey_cert *cert;
527
528 if ((cert = calloc(1, sizeof(*cert))) == NULL)
529 return NULL;
530 if ((cert->certblob = sshbuf_new()) == NULL ||
531 (cert->critical = sshbuf_new()) == NULL ||
532 (cert->extensions = sshbuf_new()) == NULL) {
533 cert_free(cert);
534 return NULL;
535 }
536 cert->key_id = NULL;
537 cert->principals = NULL;
538 cert->signature_key = NULL;
539 cert->signature_type = NULL;
540 return cert;
541 }
542
543 struct sshkey *
sshkey_new(int type)544 sshkey_new(int type)
545 {
546 struct sshkey *k;
547 #ifdef WITH_OPENSSL
548 RSA *rsa;
549 DSA *dsa;
550 #endif /* WITH_OPENSSL */
551
552 if ((k = calloc(1, sizeof(*k))) == NULL)
553 return NULL;
554 k->type = type;
555 k->ecdsa = NULL;
556 k->ecdsa_nid = -1;
557 k->dsa = NULL;
558 k->rsa = NULL;
559 k->cert = NULL;
560 k->ed25519_sk = NULL;
561 k->ed25519_pk = NULL;
562 k->xmss_sk = NULL;
563 k->xmss_pk = NULL;
564 switch (k->type) {
565 #ifdef WITH_OPENSSL
566 case KEY_RSA:
567 case KEY_RSA_CERT:
568 if ((rsa = RSA_new()) == NULL) {
569 free(k);
570 return NULL;
571 }
572 k->rsa = rsa;
573 break;
574 case KEY_DSA:
575 case KEY_DSA_CERT:
576 if ((dsa = DSA_new()) == NULL) {
577 free(k);
578 return NULL;
579 }
580 k->dsa = dsa;
581 break;
582 case KEY_ECDSA:
583 case KEY_ECDSA_CERT:
584 case KEY_ECDSA_SK:
585 case KEY_ECDSA_SK_CERT:
586 /* Cannot do anything until we know the group */
587 break;
588 #endif /* WITH_OPENSSL */
589 case KEY_ED25519:
590 case KEY_ED25519_CERT:
591 case KEY_ED25519_SK:
592 case KEY_ED25519_SK_CERT:
593 case KEY_XMSS:
594 case KEY_XMSS_CERT:
595 /* no need to prealloc */
596 break;
597 case KEY_UNSPEC:
598 break;
599 default:
600 free(k);
601 return NULL;
602 }
603
604 if (sshkey_is_cert(k)) {
605 if ((k->cert = cert_new()) == NULL) {
606 sshkey_free(k);
607 return NULL;
608 }
609 }
610
611 return k;
612 }
613
614 void
sshkey_free(struct sshkey * k)615 sshkey_free(struct sshkey *k)
616 {
617 if (k == NULL)
618 return;
619 switch (k->type) {
620 #ifdef WITH_OPENSSL
621 case KEY_RSA:
622 case KEY_RSA_CERT:
623 RSA_free(k->rsa);
624 k->rsa = NULL;
625 break;
626 case KEY_DSA:
627 case KEY_DSA_CERT:
628 DSA_free(k->dsa);
629 k->dsa = NULL;
630 break;
631 # ifdef OPENSSL_HAS_ECC
632 case KEY_ECDSA_SK:
633 case KEY_ECDSA_SK_CERT:
634 free(k->sk_application);
635 sshbuf_free(k->sk_key_handle);
636 sshbuf_free(k->sk_reserved);
637 /* FALLTHROUGH */
638 case KEY_ECDSA:
639 case KEY_ECDSA_CERT:
640 EC_KEY_free(k->ecdsa);
641 k->ecdsa = NULL;
642 break;
643 # endif /* OPENSSL_HAS_ECC */
644 #endif /* WITH_OPENSSL */
645 case KEY_ED25519_SK:
646 case KEY_ED25519_SK_CERT:
647 free(k->sk_application);
648 sshbuf_free(k->sk_key_handle);
649 sshbuf_free(k->sk_reserved);
650 /* FALLTHROUGH */
651 case KEY_ED25519:
652 case KEY_ED25519_CERT:
653 freezero(k->ed25519_pk, ED25519_PK_SZ);
654 k->ed25519_pk = NULL;
655 freezero(k->ed25519_sk, ED25519_SK_SZ);
656 k->ed25519_sk = NULL;
657 break;
658 #ifdef WITH_XMSS
659 case KEY_XMSS:
660 case KEY_XMSS_CERT:
661 freezero(k->xmss_pk, sshkey_xmss_pklen(k));
662 k->xmss_pk = NULL;
663 freezero(k->xmss_sk, sshkey_xmss_sklen(k));
664 k->xmss_sk = NULL;
665 sshkey_xmss_free_state(k);
666 free(k->xmss_name);
667 k->xmss_name = NULL;
668 free(k->xmss_filename);
669 k->xmss_filename = NULL;
670 break;
671 #endif /* WITH_XMSS */
672 case KEY_UNSPEC:
673 break;
674 default:
675 break;
676 }
677 if (sshkey_is_cert(k))
678 cert_free(k->cert);
679 freezero(k->shielded_private, k->shielded_len);
680 freezero(k->shield_prekey, k->shield_prekey_len);
681 freezero(k, sizeof(*k));
682 }
683
684 static int
cert_compare(struct sshkey_cert * a,struct sshkey_cert * b)685 cert_compare(struct sshkey_cert *a, struct sshkey_cert *b)
686 {
687 if (a == NULL && b == NULL)
688 return 1;
689 if (a == NULL || b == NULL)
690 return 0;
691 if (sshbuf_len(a->certblob) != sshbuf_len(b->certblob))
692 return 0;
693 if (timingsafe_bcmp(sshbuf_ptr(a->certblob), sshbuf_ptr(b->certblob),
694 sshbuf_len(a->certblob)) != 0)
695 return 0;
696 return 1;
697 }
698
699 /*
700 * Compare public portions of key only, allowing comparisons between
701 * certificates and plain keys too.
702 */
703 int
sshkey_equal_public(const struct sshkey * a,const struct sshkey * b)704 sshkey_equal_public(const struct sshkey *a, const struct sshkey *b)
705 {
706 #if defined(WITH_OPENSSL)
707 const BIGNUM *rsa_e_a, *rsa_n_a;
708 const BIGNUM *rsa_e_b, *rsa_n_b;
709 const BIGNUM *dsa_p_a, *dsa_q_a, *dsa_g_a, *dsa_pub_key_a;
710 const BIGNUM *dsa_p_b, *dsa_q_b, *dsa_g_b, *dsa_pub_key_b;
711 #endif /* WITH_OPENSSL */
712
713 if (a == NULL || b == NULL ||
714 sshkey_type_plain(a->type) != sshkey_type_plain(b->type))
715 return 0;
716
717 switch (a->type) {
718 #ifdef WITH_OPENSSL
719 case KEY_RSA_CERT:
720 case KEY_RSA:
721 if (a->rsa == NULL || b->rsa == NULL)
722 return 0;
723 RSA_get0_key(a->rsa, &rsa_n_a, &rsa_e_a, NULL);
724 RSA_get0_key(b->rsa, &rsa_n_b, &rsa_e_b, NULL);
725 return BN_cmp(rsa_e_a, rsa_e_b) == 0 &&
726 BN_cmp(rsa_n_a, rsa_n_b) == 0;
727 case KEY_DSA_CERT:
728 case KEY_DSA:
729 if (a->dsa == NULL || b->dsa == NULL)
730 return 0;
731 DSA_get0_pqg(a->dsa, &dsa_p_a, &dsa_q_a, &dsa_g_a);
732 DSA_get0_pqg(b->dsa, &dsa_p_b, &dsa_q_b, &dsa_g_b);
733 DSA_get0_key(a->dsa, &dsa_pub_key_a, NULL);
734 DSA_get0_key(b->dsa, &dsa_pub_key_b, NULL);
735 return BN_cmp(dsa_p_a, dsa_p_b) == 0 &&
736 BN_cmp(dsa_q_a, dsa_q_b) == 0 &&
737 BN_cmp(dsa_g_a, dsa_g_b) == 0 &&
738 BN_cmp(dsa_pub_key_a, dsa_pub_key_b) == 0;
739 # ifdef OPENSSL_HAS_ECC
740 case KEY_ECDSA_SK:
741 case KEY_ECDSA_SK_CERT:
742 if (a->sk_application == NULL || b->sk_application == NULL)
743 return 0;
744 if (strcmp(a->sk_application, b->sk_application) != 0)
745 return 0;
746 /* FALLTHROUGH */
747 case KEY_ECDSA_CERT:
748 case KEY_ECDSA:
749 if (a->ecdsa == NULL || b->ecdsa == NULL ||
750 EC_KEY_get0_public_key(a->ecdsa) == NULL ||
751 EC_KEY_get0_public_key(b->ecdsa) == NULL)
752 return 0;
753 if (EC_GROUP_cmp(EC_KEY_get0_group(a->ecdsa),
754 EC_KEY_get0_group(b->ecdsa), NULL) != 0 ||
755 EC_POINT_cmp(EC_KEY_get0_group(a->ecdsa),
756 EC_KEY_get0_public_key(a->ecdsa),
757 EC_KEY_get0_public_key(b->ecdsa), NULL) != 0)
758 return 0;
759 return 1;
760 # endif /* OPENSSL_HAS_ECC */
761 #endif /* WITH_OPENSSL */
762 case KEY_ED25519_SK:
763 case KEY_ED25519_SK_CERT:
764 if (a->sk_application == NULL || b->sk_application == NULL)
765 return 0;
766 if (strcmp(a->sk_application, b->sk_application) != 0)
767 return 0;
768 /* FALLTHROUGH */
769 case KEY_ED25519:
770 case KEY_ED25519_CERT:
771 return a->ed25519_pk != NULL && b->ed25519_pk != NULL &&
772 memcmp(a->ed25519_pk, b->ed25519_pk, ED25519_PK_SZ) == 0;
773 #ifdef WITH_XMSS
774 case KEY_XMSS:
775 case KEY_XMSS_CERT:
776 return a->xmss_pk != NULL && b->xmss_pk != NULL &&
777 sshkey_xmss_pklen(a) == sshkey_xmss_pklen(b) &&
778 memcmp(a->xmss_pk, b->xmss_pk, sshkey_xmss_pklen(a)) == 0;
779 #endif /* WITH_XMSS */
780 default:
781 return 0;
782 }
783 /* NOTREACHED */
784 }
785
786 int
sshkey_equal(const struct sshkey * a,const struct sshkey * b)787 sshkey_equal(const struct sshkey *a, const struct sshkey *b)
788 {
789 if (a == NULL || b == NULL || a->type != b->type)
790 return 0;
791 if (sshkey_is_cert(a)) {
792 if (!cert_compare(a->cert, b->cert))
793 return 0;
794 }
795 return sshkey_equal_public(a, b);
796 }
797
798 static int
to_blob_buf(const struct sshkey * key,struct sshbuf * b,int force_plain,enum sshkey_serialize_rep opts)799 to_blob_buf(const struct sshkey *key, struct sshbuf *b, int force_plain,
800 enum sshkey_serialize_rep opts)
801 {
802 int type, ret = SSH_ERR_INTERNAL_ERROR;
803 const char *typename;
804 #ifdef WITH_OPENSSL
805 const BIGNUM *rsa_n, *rsa_e, *dsa_p, *dsa_q, *dsa_g, *dsa_pub_key;
806 #endif /* WITH_OPENSSL */
807
808 if (key == NULL)
809 return SSH_ERR_INVALID_ARGUMENT;
810
811 if (sshkey_is_cert(key)) {
812 if (key->cert == NULL)
813 return SSH_ERR_EXPECTED_CERT;
814 if (sshbuf_len(key->cert->certblob) == 0)
815 return SSH_ERR_KEY_LACKS_CERTBLOB;
816 }
817 type = force_plain ? sshkey_type_plain(key->type) : key->type;
818 typename = sshkey_ssh_name_from_type_nid(type, key->ecdsa_nid);
819
820 switch (type) {
821 #ifdef WITH_OPENSSL
822 case KEY_DSA_CERT:
823 case KEY_ECDSA_CERT:
824 case KEY_ECDSA_SK_CERT:
825 case KEY_RSA_CERT:
826 #endif /* WITH_OPENSSL */
827 case KEY_ED25519_CERT:
828 case KEY_ED25519_SK_CERT:
829 #ifdef WITH_XMSS
830 case KEY_XMSS_CERT:
831 #endif /* WITH_XMSS */
832 /* Use the existing blob */
833 /* XXX modified flag? */
834 if ((ret = sshbuf_putb(b, key->cert->certblob)) != 0)
835 return ret;
836 break;
837 #ifdef WITH_OPENSSL
838 case KEY_DSA:
839 if (key->dsa == NULL)
840 return SSH_ERR_INVALID_ARGUMENT;
841 DSA_get0_pqg(key->dsa, &dsa_p, &dsa_q, &dsa_g);
842 DSA_get0_key(key->dsa, &dsa_pub_key, NULL);
843 if ((ret = sshbuf_put_cstring(b, typename)) != 0 ||
844 (ret = sshbuf_put_bignum2(b, dsa_p)) != 0 ||
845 (ret = sshbuf_put_bignum2(b, dsa_q)) != 0 ||
846 (ret = sshbuf_put_bignum2(b, dsa_g)) != 0 ||
847 (ret = sshbuf_put_bignum2(b, dsa_pub_key)) != 0)
848 return ret;
849 break;
850 # ifdef OPENSSL_HAS_ECC
851 case KEY_ECDSA:
852 case KEY_ECDSA_SK:
853 if (key->ecdsa == NULL)
854 return SSH_ERR_INVALID_ARGUMENT;
855 if ((ret = sshbuf_put_cstring(b, typename)) != 0 ||
856 (ret = sshbuf_put_cstring(b,
857 sshkey_curve_nid_to_name(key->ecdsa_nid))) != 0 ||
858 (ret = sshbuf_put_eckey(b, key->ecdsa)) != 0)
859 return ret;
860 if (type == KEY_ECDSA_SK) {
861 if ((ret = sshbuf_put_cstring(b,
862 key->sk_application)) != 0)
863 return ret;
864 }
865 break;
866 # endif
867 case KEY_RSA:
868 if (key->rsa == NULL)
869 return SSH_ERR_INVALID_ARGUMENT;
870 RSA_get0_key(key->rsa, &rsa_n, &rsa_e, NULL);
871 if ((ret = sshbuf_put_cstring(b, typename)) != 0 ||
872 (ret = sshbuf_put_bignum2(b, rsa_e)) != 0 ||
873 (ret = sshbuf_put_bignum2(b, rsa_n)) != 0)
874 return ret;
875 break;
876 #endif /* WITH_OPENSSL */
877 case KEY_ED25519:
878 case KEY_ED25519_SK:
879 if (key->ed25519_pk == NULL)
880 return SSH_ERR_INVALID_ARGUMENT;
881 if ((ret = sshbuf_put_cstring(b, typename)) != 0 ||
882 (ret = sshbuf_put_string(b,
883 key->ed25519_pk, ED25519_PK_SZ)) != 0)
884 return ret;
885 if (type == KEY_ED25519_SK) {
886 if ((ret = sshbuf_put_cstring(b,
887 key->sk_application)) != 0)
888 return ret;
889 }
890 break;
891 #ifdef WITH_XMSS
892 case KEY_XMSS:
893 if (key->xmss_name == NULL || key->xmss_pk == NULL ||
894 sshkey_xmss_pklen(key) == 0)
895 return SSH_ERR_INVALID_ARGUMENT;
896 if ((ret = sshbuf_put_cstring(b, typename)) != 0 ||
897 (ret = sshbuf_put_cstring(b, key->xmss_name)) != 0 ||
898 (ret = sshbuf_put_string(b,
899 key->xmss_pk, sshkey_xmss_pklen(key))) != 0 ||
900 (ret = sshkey_xmss_serialize_pk_info(key, b, opts)) != 0)
901 return ret;
902 break;
903 #endif /* WITH_XMSS */
904 default:
905 return SSH_ERR_KEY_TYPE_UNKNOWN;
906 }
907 return 0;
908 }
909
910 int
sshkey_putb(const struct sshkey * key,struct sshbuf * b)911 sshkey_putb(const struct sshkey *key, struct sshbuf *b)
912 {
913 return to_blob_buf(key, b, 0, SSHKEY_SERIALIZE_DEFAULT);
914 }
915
916 int
sshkey_puts_opts(const struct sshkey * key,struct sshbuf * b,enum sshkey_serialize_rep opts)917 sshkey_puts_opts(const struct sshkey *key, struct sshbuf *b,
918 enum sshkey_serialize_rep opts)
919 {
920 struct sshbuf *tmp;
921 int r;
922
923 if ((tmp = sshbuf_new()) == NULL)
924 return SSH_ERR_ALLOC_FAIL;
925 r = to_blob_buf(key, tmp, 0, opts);
926 if (r == 0)
927 r = sshbuf_put_stringb(b, tmp);
928 sshbuf_free(tmp);
929 return r;
930 }
931
932 int
sshkey_puts(const struct sshkey * key,struct sshbuf * b)933 sshkey_puts(const struct sshkey *key, struct sshbuf *b)
934 {
935 return sshkey_puts_opts(key, b, SSHKEY_SERIALIZE_DEFAULT);
936 }
937
938 int
sshkey_putb_plain(const struct sshkey * key,struct sshbuf * b)939 sshkey_putb_plain(const struct sshkey *key, struct sshbuf *b)
940 {
941 return to_blob_buf(key, b, 1, SSHKEY_SERIALIZE_DEFAULT);
942 }
943
944 static int
to_blob(const struct sshkey * key,u_char ** blobp,size_t * lenp,int force_plain,enum sshkey_serialize_rep opts)945 to_blob(const struct sshkey *key, u_char **blobp, size_t *lenp, int force_plain,
946 enum sshkey_serialize_rep opts)
947 {
948 int ret = SSH_ERR_INTERNAL_ERROR;
949 size_t len;
950 struct sshbuf *b = NULL;
951
952 if (lenp != NULL)
953 *lenp = 0;
954 if (blobp != NULL)
955 *blobp = NULL;
956 if ((b = sshbuf_new()) == NULL)
957 return SSH_ERR_ALLOC_FAIL;
958 if ((ret = to_blob_buf(key, b, force_plain, opts)) != 0)
959 goto out;
960 len = sshbuf_len(b);
961 if (lenp != NULL)
962 *lenp = len;
963 if (blobp != NULL) {
964 if ((*blobp = malloc(len)) == NULL) {
965 ret = SSH_ERR_ALLOC_FAIL;
966 goto out;
967 }
968 memcpy(*blobp, sshbuf_ptr(b), len);
969 }
970 ret = 0;
971 out:
972 sshbuf_free(b);
973 return ret;
974 }
975
976 int
sshkey_to_blob(const struct sshkey * key,u_char ** blobp,size_t * lenp)977 sshkey_to_blob(const struct sshkey *key, u_char **blobp, size_t *lenp)
978 {
979 return to_blob(key, blobp, lenp, 0, SSHKEY_SERIALIZE_DEFAULT);
980 }
981
982 int
sshkey_plain_to_blob(const struct sshkey * key,u_char ** blobp,size_t * lenp)983 sshkey_plain_to_blob(const struct sshkey *key, u_char **blobp, size_t *lenp)
984 {
985 return to_blob(key, blobp, lenp, 1, SSHKEY_SERIALIZE_DEFAULT);
986 }
987
988 int
sshkey_fingerprint_raw(const struct sshkey * k,int dgst_alg,u_char ** retp,size_t * lenp)989 sshkey_fingerprint_raw(const struct sshkey *k, int dgst_alg,
990 u_char **retp, size_t *lenp)
991 {
992 u_char *blob = NULL, *ret = NULL;
993 size_t blob_len = 0;
994 int r = SSH_ERR_INTERNAL_ERROR;
995
996 if (retp != NULL)
997 *retp = NULL;
998 if (lenp != NULL)
999 *lenp = 0;
1000 if (ssh_digest_bytes(dgst_alg) == 0) {
1001 r = SSH_ERR_INVALID_ARGUMENT;
1002 goto out;
1003 }
1004 if ((r = to_blob(k, &blob, &blob_len, 1, SSHKEY_SERIALIZE_DEFAULT))
1005 != 0)
1006 goto out;
1007 if ((ret = calloc(1, SSH_DIGEST_MAX_LENGTH)) == NULL) {
1008 r = SSH_ERR_ALLOC_FAIL;
1009 goto out;
1010 }
1011 if ((r = ssh_digest_memory(dgst_alg, blob, blob_len,
1012 ret, SSH_DIGEST_MAX_LENGTH)) != 0)
1013 goto out;
1014 /* success */
1015 if (retp != NULL) {
1016 *retp = ret;
1017 ret = NULL;
1018 }
1019 if (lenp != NULL)
1020 *lenp = ssh_digest_bytes(dgst_alg);
1021 r = 0;
1022 out:
1023 free(ret);
1024 if (blob != NULL)
1025 freezero(blob, blob_len);
1026 return r;
1027 }
1028
1029 static char *
fingerprint_b64(const char * alg,u_char * dgst_raw,size_t dgst_raw_len)1030 fingerprint_b64(const char *alg, u_char *dgst_raw, size_t dgst_raw_len)
1031 {
1032 char *ret;
1033 size_t plen = strlen(alg) + 1;
1034 size_t rlen = ((dgst_raw_len + 2) / 3) * 4 + plen + 1;
1035
1036 if (dgst_raw_len > 65536 || (ret = calloc(1, rlen)) == NULL)
1037 return NULL;
1038 strlcpy(ret, alg, rlen);
1039 strlcat(ret, ":", rlen);
1040 if (dgst_raw_len == 0)
1041 return ret;
1042 if (b64_ntop(dgst_raw, dgst_raw_len, ret + plen, rlen - plen) == -1) {
1043 freezero(ret, rlen);
1044 return NULL;
1045 }
1046 /* Trim padding characters from end */
1047 ret[strcspn(ret, "=")] = '\0';
1048 return ret;
1049 }
1050
1051 static char *
fingerprint_hex(const char * alg,u_char * dgst_raw,size_t dgst_raw_len)1052 fingerprint_hex(const char *alg, u_char *dgst_raw, size_t dgst_raw_len)
1053 {
1054 char *retval, hex[5];
1055 size_t i, rlen = dgst_raw_len * 3 + strlen(alg) + 2;
1056
1057 if (dgst_raw_len > 65536 || (retval = calloc(1, rlen)) == NULL)
1058 return NULL;
1059 strlcpy(retval, alg, rlen);
1060 strlcat(retval, ":", rlen);
1061 for (i = 0; i < dgst_raw_len; i++) {
1062 snprintf(hex, sizeof(hex), "%s%02x",
1063 i > 0 ? ":" : "", dgst_raw[i]);
1064 strlcat(retval, hex, rlen);
1065 }
1066 return retval;
1067 }
1068
1069 static char *
fingerprint_bubblebabble(u_char * dgst_raw,size_t dgst_raw_len)1070 fingerprint_bubblebabble(u_char *dgst_raw, size_t dgst_raw_len)
1071 {
1072 char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
1073 char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
1074 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
1075 u_int i, j = 0, rounds, seed = 1;
1076 char *retval;
1077
1078 rounds = (dgst_raw_len / 2) + 1;
1079 if ((retval = calloc(rounds, 6)) == NULL)
1080 return NULL;
1081 retval[j++] = 'x';
1082 for (i = 0; i < rounds; i++) {
1083 u_int idx0, idx1, idx2, idx3, idx4;
1084 if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
1085 idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
1086 seed) % 6;
1087 idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
1088 idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
1089 (seed / 6)) % 6;
1090 retval[j++] = vowels[idx0];
1091 retval[j++] = consonants[idx1];
1092 retval[j++] = vowels[idx2];
1093 if ((i + 1) < rounds) {
1094 idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
1095 idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
1096 retval[j++] = consonants[idx3];
1097 retval[j++] = '-';
1098 retval[j++] = consonants[idx4];
1099 seed = ((seed * 5) +
1100 ((((u_int)(dgst_raw[2 * i])) * 7) +
1101 ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
1102 }
1103 } else {
1104 idx0 = seed % 6;
1105 idx1 = 16;
1106 idx2 = seed / 6;
1107 retval[j++] = vowels[idx0];
1108 retval[j++] = consonants[idx1];
1109 retval[j++] = vowels[idx2];
1110 }
1111 }
1112 retval[j++] = 'x';
1113 retval[j++] = '\0';
1114 return retval;
1115 }
1116
1117 /*
1118 * Draw an ASCII-Art representing the fingerprint so human brain can
1119 * profit from its built-in pattern recognition ability.
1120 * This technique is called "random art" and can be found in some
1121 * scientific publications like this original paper:
1122 *
1123 * "Hash Visualization: a New Technique to improve Real-World Security",
1124 * Perrig A. and Song D., 1999, International Workshop on Cryptographic
1125 * Techniques and E-Commerce (CrypTEC '99)
1126 * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
1127 *
1128 * The subject came up in a talk by Dan Kaminsky, too.
1129 *
1130 * If you see the picture is different, the key is different.
1131 * If the picture looks the same, you still know nothing.
1132 *
1133 * The algorithm used here is a worm crawling over a discrete plane,
1134 * leaving a trace (augmenting the field) everywhere it goes.
1135 * Movement is taken from dgst_raw 2bit-wise. Bumping into walls
1136 * makes the respective movement vector be ignored for this turn.
1137 * Graphs are not unambiguous, because circles in graphs can be
1138 * walked in either direction.
1139 */
1140
1141 /*
1142 * Field sizes for the random art. Have to be odd, so the starting point
1143 * can be in the exact middle of the picture, and FLDBASE should be >=8 .
1144 * Else pictures would be too dense, and drawing the frame would
1145 * fail, too, because the key type would not fit in anymore.
1146 */
1147 #define FLDBASE 8
1148 #define FLDSIZE_Y (FLDBASE + 1)
1149 #define FLDSIZE_X (FLDBASE * 2 + 1)
1150 static char *
fingerprint_randomart(const char * alg,u_char * dgst_raw,size_t dgst_raw_len,const struct sshkey * k)1151 fingerprint_randomart(const char *alg, u_char *dgst_raw, size_t dgst_raw_len,
1152 const struct sshkey *k)
1153 {
1154 /*
1155 * Chars to be used after each other every time the worm
1156 * intersects with itself. Matter of taste.
1157 */
1158 char *augmentation_string = " .o+=*BOX@%&#/^SE";
1159 char *retval, *p, title[FLDSIZE_X], hash[FLDSIZE_X];
1160 u_char field[FLDSIZE_X][FLDSIZE_Y];
1161 size_t i, tlen, hlen;
1162 u_int b;
1163 int x, y, r;
1164 size_t len = strlen(augmentation_string) - 1;
1165
1166 if ((retval = calloc((FLDSIZE_X + 3), (FLDSIZE_Y + 2))) == NULL)
1167 return NULL;
1168
1169 /* initialize field */
1170 memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char));
1171 x = FLDSIZE_X / 2;
1172 y = FLDSIZE_Y / 2;
1173
1174 /* process raw key */
1175 for (i = 0; i < dgst_raw_len; i++) {
1176 int input;
1177 /* each byte conveys four 2-bit move commands */
1178 input = dgst_raw[i];
1179 for (b = 0; b < 4; b++) {
1180 /* evaluate 2 bit, rest is shifted later */
1181 x += (input & 0x1) ? 1 : -1;
1182 y += (input & 0x2) ? 1 : -1;
1183
1184 /* assure we are still in bounds */
1185 x = MAXIMUM(x, 0);
1186 y = MAXIMUM(y, 0);
1187 x = MINIMUM(x, FLDSIZE_X - 1);
1188 y = MINIMUM(y, FLDSIZE_Y - 1);
1189
1190 /* augment the field */
1191 if (field[x][y] < len - 2)
1192 field[x][y]++;
1193 input = input >> 2;
1194 }
1195 }
1196
1197 /* mark starting point and end point*/
1198 field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1;
1199 field[x][y] = len;
1200
1201 /* assemble title */
1202 r = snprintf(title, sizeof(title), "[%s %u]",
1203 sshkey_type(k), sshkey_size(k));
1204 /* If [type size] won't fit, then try [type]; fits "[ED25519-CERT]" */
1205 if (r < 0 || r > (int)sizeof(title))
1206 r = snprintf(title, sizeof(title), "[%s]", sshkey_type(k));
1207 tlen = (r <= 0) ? 0 : strlen(title);
1208
1209 /* assemble hash ID. */
1210 r = snprintf(hash, sizeof(hash), "[%s]", alg);
1211 hlen = (r <= 0) ? 0 : strlen(hash);
1212
1213 /* output upper border */
1214 p = retval;
1215 *p++ = '+';
1216 for (i = 0; i < (FLDSIZE_X - tlen) / 2; i++)
1217 *p++ = '-';
1218 memcpy(p, title, tlen);
1219 p += tlen;
1220 for (i += tlen; i < FLDSIZE_X; i++)
1221 *p++ = '-';
1222 *p++ = '+';
1223 *p++ = '\n';
1224
1225 /* output content */
1226 for (y = 0; y < FLDSIZE_Y; y++) {
1227 *p++ = '|';
1228 for (x = 0; x < FLDSIZE_X; x++)
1229 *p++ = augmentation_string[MINIMUM(field[x][y], len)];
1230 *p++ = '|';
1231 *p++ = '\n';
1232 }
1233
1234 /* output lower border */
1235 *p++ = '+';
1236 for (i = 0; i < (FLDSIZE_X - hlen) / 2; i++)
1237 *p++ = '-';
1238 memcpy(p, hash, hlen);
1239 p += hlen;
1240 for (i += hlen; i < FLDSIZE_X; i++)
1241 *p++ = '-';
1242 *p++ = '+';
1243
1244 return retval;
1245 }
1246
1247 char *
sshkey_fingerprint(const struct sshkey * k,int dgst_alg,enum sshkey_fp_rep dgst_rep)1248 sshkey_fingerprint(const struct sshkey *k, int dgst_alg,
1249 enum sshkey_fp_rep dgst_rep)
1250 {
1251 char *retval = NULL;
1252 u_char *dgst_raw;
1253 size_t dgst_raw_len;
1254
1255 if (sshkey_fingerprint_raw(k, dgst_alg, &dgst_raw, &dgst_raw_len) != 0)
1256 return NULL;
1257 switch (dgst_rep) {
1258 case SSH_FP_DEFAULT:
1259 if (dgst_alg == SSH_DIGEST_MD5) {
1260 retval = fingerprint_hex(ssh_digest_alg_name(dgst_alg),
1261 dgst_raw, dgst_raw_len);
1262 } else {
1263 retval = fingerprint_b64(ssh_digest_alg_name(dgst_alg),
1264 dgst_raw, dgst_raw_len);
1265 }
1266 break;
1267 case SSH_FP_HEX:
1268 retval = fingerprint_hex(ssh_digest_alg_name(dgst_alg),
1269 dgst_raw, dgst_raw_len);
1270 break;
1271 case SSH_FP_BASE64:
1272 retval = fingerprint_b64(ssh_digest_alg_name(dgst_alg),
1273 dgst_raw, dgst_raw_len);
1274 break;
1275 case SSH_FP_BUBBLEBABBLE:
1276 retval = fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
1277 break;
1278 case SSH_FP_RANDOMART:
1279 retval = fingerprint_randomart(ssh_digest_alg_name(dgst_alg),
1280 dgst_raw, dgst_raw_len, k);
1281 break;
1282 default:
1283 freezero(dgst_raw, dgst_raw_len);
1284 return NULL;
1285 }
1286 freezero(dgst_raw, dgst_raw_len);
1287 return retval;
1288 }
1289
1290 static int
peek_type_nid(const char * s,size_t l,int * nid)1291 peek_type_nid(const char *s, size_t l, int *nid)
1292 {
1293 const struct keytype *kt;
1294
1295 for (kt = keytypes; kt->type != -1; kt++) {
1296 if (kt->name == NULL || strlen(kt->name) != l)
1297 continue;
1298 if (memcmp(s, kt->name, l) == 0) {
1299 *nid = -1;
1300 if (key_type_is_ecdsa_variant(kt->type))
1301 *nid = kt->nid;
1302 return kt->type;
1303 }
1304 }
1305 return KEY_UNSPEC;
1306 }
1307
1308 /* XXX this can now be made const char * */
1309 int
sshkey_read(struct sshkey * ret,char ** cpp)1310 sshkey_read(struct sshkey *ret, char **cpp)
1311 {
1312 struct sshkey *k;
1313 char *cp, *blobcopy;
1314 size_t space;
1315 int r, type, curve_nid = -1;
1316 struct sshbuf *blob;
1317
1318 if (ret == NULL)
1319 return SSH_ERR_INVALID_ARGUMENT;
1320
1321 switch (ret->type) {
1322 case KEY_UNSPEC:
1323 case KEY_RSA:
1324 case KEY_DSA:
1325 case KEY_ECDSA:
1326 case KEY_ECDSA_SK:
1327 case KEY_ED25519:
1328 case KEY_ED25519_SK:
1329 case KEY_DSA_CERT:
1330 case KEY_ECDSA_CERT:
1331 case KEY_ECDSA_SK_CERT:
1332 case KEY_RSA_CERT:
1333 case KEY_ED25519_CERT:
1334 case KEY_ED25519_SK_CERT:
1335 #ifdef WITH_XMSS
1336 case KEY_XMSS:
1337 case KEY_XMSS_CERT:
1338 #endif /* WITH_XMSS */
1339 break; /* ok */
1340 default:
1341 return SSH_ERR_INVALID_ARGUMENT;
1342 }
1343
1344 /* Decode type */
1345 cp = *cpp;
1346 space = strcspn(cp, " \t");
1347 if (space == strlen(cp))
1348 return SSH_ERR_INVALID_FORMAT;
1349 if ((type = peek_type_nid(cp, space, &curve_nid)) == KEY_UNSPEC)
1350 return SSH_ERR_INVALID_FORMAT;
1351
1352 /* skip whitespace */
1353 for (cp += space; *cp == ' ' || *cp == '\t'; cp++)
1354 ;
1355 if (*cp == '\0')
1356 return SSH_ERR_INVALID_FORMAT;
1357 if (ret->type != KEY_UNSPEC && ret->type != type)
1358 return SSH_ERR_KEY_TYPE_MISMATCH;
1359 if ((blob = sshbuf_new()) == NULL)
1360 return SSH_ERR_ALLOC_FAIL;
1361
1362 /* find end of keyblob and decode */
1363 space = strcspn(cp, " \t");
1364 if ((blobcopy = strndup(cp, space)) == NULL) {
1365 sshbuf_free(blob);
1366 return SSH_ERR_ALLOC_FAIL;
1367 }
1368 if ((r = sshbuf_b64tod(blob, blobcopy)) != 0) {
1369 free(blobcopy);
1370 sshbuf_free(blob);
1371 return r;
1372 }
1373 free(blobcopy);
1374 if ((r = sshkey_fromb(blob, &k)) != 0) {
1375 sshbuf_free(blob);
1376 return r;
1377 }
1378 sshbuf_free(blob);
1379
1380 /* skip whitespace and leave cp at start of comment */
1381 for (cp += space; *cp == ' ' || *cp == '\t'; cp++)
1382 ;
1383
1384 /* ensure type of blob matches type at start of line */
1385 if (k->type != type) {
1386 sshkey_free(k);
1387 return SSH_ERR_KEY_TYPE_MISMATCH;
1388 }
1389 if (key_type_is_ecdsa_variant(type) && curve_nid != k->ecdsa_nid) {
1390 sshkey_free(k);
1391 return SSH_ERR_EC_CURVE_MISMATCH;
1392 }
1393
1394 /* Fill in ret from parsed key */
1395 ret->type = type;
1396 if (sshkey_is_cert(ret)) {
1397 if (!sshkey_is_cert(k)) {
1398 sshkey_free(k);
1399 return SSH_ERR_EXPECTED_CERT;
1400 }
1401 if (ret->cert != NULL)
1402 cert_free(ret->cert);
1403 ret->cert = k->cert;
1404 k->cert = NULL;
1405 }
1406 switch (sshkey_type_plain(ret->type)) {
1407 #ifdef WITH_OPENSSL
1408 case KEY_RSA:
1409 RSA_free(ret->rsa);
1410 ret->rsa = k->rsa;
1411 k->rsa = NULL;
1412 #ifdef DEBUG_PK
1413 RSA_print_fp(stderr, ret->rsa, 8);
1414 #endif
1415 break;
1416 case KEY_DSA:
1417 DSA_free(ret->dsa);
1418 ret->dsa = k->dsa;
1419 k->dsa = NULL;
1420 #ifdef DEBUG_PK
1421 DSA_print_fp(stderr, ret->dsa, 8);
1422 #endif
1423 break;
1424 # ifdef OPENSSL_HAS_ECC
1425 case KEY_ECDSA:
1426 EC_KEY_free(ret->ecdsa);
1427 ret->ecdsa = k->ecdsa;
1428 ret->ecdsa_nid = k->ecdsa_nid;
1429 k->ecdsa = NULL;
1430 k->ecdsa_nid = -1;
1431 #ifdef DEBUG_PK
1432 sshkey_dump_ec_key(ret->ecdsa);
1433 #endif
1434 break;
1435 case KEY_ECDSA_SK:
1436 EC_KEY_free(ret->ecdsa);
1437 ret->ecdsa = k->ecdsa;
1438 ret->ecdsa_nid = k->ecdsa_nid;
1439 ret->sk_application = k->sk_application;
1440 k->ecdsa = NULL;
1441 k->ecdsa_nid = -1;
1442 k->sk_application = NULL;
1443 #ifdef DEBUG_PK
1444 sshkey_dump_ec_key(ret->ecdsa);
1445 fprintf(stderr, "App: %s\n", ret->sk_application);
1446 #endif
1447 break;
1448 # endif /* OPENSSL_HAS_ECC */
1449 #endif /* WITH_OPENSSL */
1450 case KEY_ED25519:
1451 freezero(ret->ed25519_pk, ED25519_PK_SZ);
1452 ret->ed25519_pk = k->ed25519_pk;
1453 k->ed25519_pk = NULL;
1454 #ifdef DEBUG_PK
1455 /* XXX */
1456 #endif
1457 break;
1458 case KEY_ED25519_SK:
1459 freezero(ret->ed25519_pk, ED25519_PK_SZ);
1460 ret->ed25519_pk = k->ed25519_pk;
1461 ret->sk_application = k->sk_application;
1462 k->ed25519_pk = NULL;
1463 k->sk_application = NULL;
1464 break;
1465 #ifdef WITH_XMSS
1466 case KEY_XMSS:
1467 free(ret->xmss_pk);
1468 ret->xmss_pk = k->xmss_pk;
1469 k->xmss_pk = NULL;
1470 free(ret->xmss_state);
1471 ret->xmss_state = k->xmss_state;
1472 k->xmss_state = NULL;
1473 free(ret->xmss_name);
1474 ret->xmss_name = k->xmss_name;
1475 k->xmss_name = NULL;
1476 free(ret->xmss_filename);
1477 ret->xmss_filename = k->xmss_filename;
1478 k->xmss_filename = NULL;
1479 #ifdef DEBUG_PK
1480 /* XXX */
1481 #endif
1482 break;
1483 #endif /* WITH_XMSS */
1484 default:
1485 sshkey_free(k);
1486 return SSH_ERR_INTERNAL_ERROR;
1487 }
1488 sshkey_free(k);
1489
1490 /* success */
1491 *cpp = cp;
1492 return 0;
1493 }
1494
1495
1496 int
sshkey_to_base64(const struct sshkey * key,char ** b64p)1497 sshkey_to_base64(const struct sshkey *key, char **b64p)
1498 {
1499 int r = SSH_ERR_INTERNAL_ERROR;
1500 struct sshbuf *b = NULL;
1501 char *uu = NULL;
1502
1503 if (b64p != NULL)
1504 *b64p = NULL;
1505 if ((b = sshbuf_new()) == NULL)
1506 return SSH_ERR_ALLOC_FAIL;
1507 if ((r = sshkey_putb(key, b)) != 0)
1508 goto out;
1509 if ((uu = sshbuf_dtob64_string(b, 0)) == NULL) {
1510 r = SSH_ERR_ALLOC_FAIL;
1511 goto out;
1512 }
1513 /* Success */
1514 if (b64p != NULL) {
1515 *b64p = uu;
1516 uu = NULL;
1517 }
1518 r = 0;
1519 out:
1520 sshbuf_free(b);
1521 free(uu);
1522 return r;
1523 }
1524
1525 int
sshkey_format_text(const struct sshkey * key,struct sshbuf * b)1526 sshkey_format_text(const struct sshkey *key, struct sshbuf *b)
1527 {
1528 int r = SSH_ERR_INTERNAL_ERROR;
1529 char *uu = NULL;
1530
1531 if ((r = sshkey_to_base64(key, &uu)) != 0)
1532 goto out;
1533 if ((r = sshbuf_putf(b, "%s %s",
1534 sshkey_ssh_name(key), uu)) != 0)
1535 goto out;
1536 r = 0;
1537 out:
1538 free(uu);
1539 return r;
1540 }
1541
1542 int
sshkey_write(const struct sshkey * key,FILE * f)1543 sshkey_write(const struct sshkey *key, FILE *f)
1544 {
1545 struct sshbuf *b = NULL;
1546 int r = SSH_ERR_INTERNAL_ERROR;
1547
1548 if ((b = sshbuf_new()) == NULL)
1549 return SSH_ERR_ALLOC_FAIL;
1550 if ((r = sshkey_format_text(key, b)) != 0)
1551 goto out;
1552 if (fwrite(sshbuf_ptr(b), sshbuf_len(b), 1, f) != 1) {
1553 if (feof(f))
1554 errno = EPIPE;
1555 r = SSH_ERR_SYSTEM_ERROR;
1556 goto out;
1557 }
1558 /* Success */
1559 r = 0;
1560 out:
1561 sshbuf_free(b);
1562 return r;
1563 }
1564
1565 const char *
sshkey_cert_type(const struct sshkey * k)1566 sshkey_cert_type(const struct sshkey *k)
1567 {
1568 switch (k->cert->type) {
1569 case SSH2_CERT_TYPE_USER:
1570 return "user";
1571 case SSH2_CERT_TYPE_HOST:
1572 return "host";
1573 default:
1574 return "unknown";
1575 }
1576 }
1577
1578 #ifdef WITH_OPENSSL
1579 static int
rsa_generate_private_key(u_int bits,RSA ** rsap)1580 rsa_generate_private_key(u_int bits, RSA **rsap)
1581 {
1582 RSA *private = NULL;
1583 BIGNUM *f4 = NULL;
1584 int ret = SSH_ERR_INTERNAL_ERROR;
1585
1586 if (rsap == NULL)
1587 return SSH_ERR_INVALID_ARGUMENT;
1588 if (bits < SSH_RSA_MINIMUM_MODULUS_SIZE ||
1589 bits > SSHBUF_MAX_BIGNUM * 8)
1590 return SSH_ERR_KEY_LENGTH;
1591 *rsap = NULL;
1592 if ((private = RSA_new()) == NULL || (f4 = BN_new()) == NULL) {
1593 ret = SSH_ERR_ALLOC_FAIL;
1594 goto out;
1595 }
1596 if (!BN_set_word(f4, RSA_F4) ||
1597 !RSA_generate_key_ex(private, bits, f4, NULL)) {
1598 ret = SSH_ERR_LIBCRYPTO_ERROR;
1599 goto out;
1600 }
1601 *rsap = private;
1602 private = NULL;
1603 ret = 0;
1604 out:
1605 RSA_free(private);
1606 BN_free(f4);
1607 return ret;
1608 }
1609
1610 static int
dsa_generate_private_key(u_int bits,DSA ** dsap)1611 dsa_generate_private_key(u_int bits, DSA **dsap)
1612 {
1613 DSA *private;
1614 int ret = SSH_ERR_INTERNAL_ERROR;
1615
1616 if (dsap == NULL)
1617 return SSH_ERR_INVALID_ARGUMENT;
1618 if (bits != 1024)
1619 return SSH_ERR_KEY_LENGTH;
1620 if ((private = DSA_new()) == NULL) {
1621 ret = SSH_ERR_ALLOC_FAIL;
1622 goto out;
1623 }
1624 *dsap = NULL;
1625 if (!DSA_generate_parameters_ex(private, bits, NULL, 0, NULL,
1626 NULL, NULL) || !DSA_generate_key(private)) {
1627 ret = SSH_ERR_LIBCRYPTO_ERROR;
1628 goto out;
1629 }
1630 *dsap = private;
1631 private = NULL;
1632 ret = 0;
1633 out:
1634 DSA_free(private);
1635 return ret;
1636 }
1637
1638 # ifdef OPENSSL_HAS_ECC
1639 int
sshkey_ecdsa_key_to_nid(EC_KEY * k)1640 sshkey_ecdsa_key_to_nid(EC_KEY *k)
1641 {
1642 EC_GROUP *eg;
1643 int nids[] = {
1644 NID_X9_62_prime256v1,
1645 NID_secp384r1,
1646 # ifdef OPENSSL_HAS_NISTP521
1647 NID_secp521r1,
1648 # endif /* OPENSSL_HAS_NISTP521 */
1649 -1
1650 };
1651 int nid;
1652 u_int i;
1653 const EC_GROUP *g = EC_KEY_get0_group(k);
1654
1655 /*
1656 * The group may be stored in a ASN.1 encoded private key in one of two
1657 * ways: as a "named group", which is reconstituted by ASN.1 object ID
1658 * or explicit group parameters encoded into the key blob. Only the
1659 * "named group" case sets the group NID for us, but we can figure
1660 * it out for the other case by comparing against all the groups that
1661 * are supported.
1662 */
1663 if ((nid = EC_GROUP_get_curve_name(g)) > 0)
1664 return nid;
1665 for (i = 0; nids[i] != -1; i++) {
1666 if ((eg = EC_GROUP_new_by_curve_name(nids[i])) == NULL)
1667 return -1;
1668 if (EC_GROUP_cmp(g, eg, NULL) == 0)
1669 break;
1670 EC_GROUP_free(eg);
1671 }
1672 if (nids[i] != -1) {
1673 /* Use the group with the NID attached */
1674 EC_GROUP_set_asn1_flag(eg, OPENSSL_EC_NAMED_CURVE);
1675 if (EC_KEY_set_group(k, eg) != 1) {
1676 EC_GROUP_free(eg);
1677 return -1;
1678 }
1679 }
1680 return nids[i];
1681 }
1682
1683 static int
ecdsa_generate_private_key(u_int bits,int * nid,EC_KEY ** ecdsap)1684 ecdsa_generate_private_key(u_int bits, int *nid, EC_KEY **ecdsap)
1685 {
1686 EC_KEY *private;
1687 int ret = SSH_ERR_INTERNAL_ERROR;
1688
1689 if (nid == NULL || ecdsap == NULL)
1690 return SSH_ERR_INVALID_ARGUMENT;
1691 if ((*nid = sshkey_ecdsa_bits_to_nid(bits)) == -1)
1692 return SSH_ERR_KEY_LENGTH;
1693 *ecdsap = NULL;
1694 if ((private = EC_KEY_new_by_curve_name(*nid)) == NULL) {
1695 ret = SSH_ERR_ALLOC_FAIL;
1696 goto out;
1697 }
1698 if (EC_KEY_generate_key(private) != 1) {
1699 ret = SSH_ERR_LIBCRYPTO_ERROR;
1700 goto out;
1701 }
1702 EC_KEY_set_asn1_flag(private, OPENSSL_EC_NAMED_CURVE);
1703 *ecdsap = private;
1704 private = NULL;
1705 ret = 0;
1706 out:
1707 EC_KEY_free(private);
1708 return ret;
1709 }
1710 # endif /* OPENSSL_HAS_ECC */
1711 #endif /* WITH_OPENSSL */
1712
1713 int
sshkey_generate(int type,u_int bits,struct sshkey ** keyp)1714 sshkey_generate(int type, u_int bits, struct sshkey **keyp)
1715 {
1716 struct sshkey *k;
1717 int ret = SSH_ERR_INTERNAL_ERROR;
1718
1719 if (keyp == NULL)
1720 return SSH_ERR_INVALID_ARGUMENT;
1721 *keyp = NULL;
1722 if ((k = sshkey_new(KEY_UNSPEC)) == NULL)
1723 return SSH_ERR_ALLOC_FAIL;
1724 switch (type) {
1725 case KEY_ED25519:
1726 if ((k->ed25519_pk = malloc(ED25519_PK_SZ)) == NULL ||
1727 (k->ed25519_sk = malloc(ED25519_SK_SZ)) == NULL) {
1728 ret = SSH_ERR_ALLOC_FAIL;
1729 break;
1730 }
1731 crypto_sign_ed25519_keypair(k->ed25519_pk, k->ed25519_sk);
1732 ret = 0;
1733 break;
1734 #ifdef WITH_XMSS
1735 case KEY_XMSS:
1736 ret = sshkey_xmss_generate_private_key(k, bits);
1737 break;
1738 #endif /* WITH_XMSS */
1739 #ifdef WITH_OPENSSL
1740 case KEY_DSA:
1741 ret = dsa_generate_private_key(bits, &k->dsa);
1742 break;
1743 # ifdef OPENSSL_HAS_ECC
1744 case KEY_ECDSA:
1745 ret = ecdsa_generate_private_key(bits, &k->ecdsa_nid,
1746 &k->ecdsa);
1747 break;
1748 # endif /* OPENSSL_HAS_ECC */
1749 case KEY_RSA:
1750 ret = rsa_generate_private_key(bits, &k->rsa);
1751 break;
1752 #endif /* WITH_OPENSSL */
1753 default:
1754 ret = SSH_ERR_INVALID_ARGUMENT;
1755 }
1756 if (ret == 0) {
1757 k->type = type;
1758 *keyp = k;
1759 } else
1760 sshkey_free(k);
1761 return ret;
1762 }
1763
1764 int
sshkey_cert_copy(const struct sshkey * from_key,struct sshkey * to_key)1765 sshkey_cert_copy(const struct sshkey *from_key, struct sshkey *to_key)
1766 {
1767 u_int i;
1768 const struct sshkey_cert *from;
1769 struct sshkey_cert *to;
1770 int r = SSH_ERR_INTERNAL_ERROR;
1771
1772 if (to_key == NULL || (from = from_key->cert) == NULL)
1773 return SSH_ERR_INVALID_ARGUMENT;
1774
1775 if ((to = cert_new()) == NULL)
1776 return SSH_ERR_ALLOC_FAIL;
1777
1778 if ((r = sshbuf_putb(to->certblob, from->certblob)) != 0 ||
1779 (r = sshbuf_putb(to->critical, from->critical)) != 0 ||
1780 (r = sshbuf_putb(to->extensions, from->extensions)) != 0)
1781 goto out;
1782
1783 to->serial = from->serial;
1784 to->type = from->type;
1785 if (from->key_id == NULL)
1786 to->key_id = NULL;
1787 else if ((to->key_id = strdup(from->key_id)) == NULL) {
1788 r = SSH_ERR_ALLOC_FAIL;
1789 goto out;
1790 }
1791 to->valid_after = from->valid_after;
1792 to->valid_before = from->valid_before;
1793 if (from->signature_key == NULL)
1794 to->signature_key = NULL;
1795 else if ((r = sshkey_from_private(from->signature_key,
1796 &to->signature_key)) != 0)
1797 goto out;
1798 if (from->signature_type != NULL &&
1799 (to->signature_type = strdup(from->signature_type)) == NULL) {
1800 r = SSH_ERR_ALLOC_FAIL;
1801 goto out;
1802 }
1803 if (from->nprincipals > SSHKEY_CERT_MAX_PRINCIPALS) {
1804 r = SSH_ERR_INVALID_ARGUMENT;
1805 goto out;
1806 }
1807 if (from->nprincipals > 0) {
1808 if ((to->principals = calloc(from->nprincipals,
1809 sizeof(*to->principals))) == NULL) {
1810 r = SSH_ERR_ALLOC_FAIL;
1811 goto out;
1812 }
1813 for (i = 0; i < from->nprincipals; i++) {
1814 to->principals[i] = strdup(from->principals[i]);
1815 if (to->principals[i] == NULL) {
1816 to->nprincipals = i;
1817 r = SSH_ERR_ALLOC_FAIL;
1818 goto out;
1819 }
1820 }
1821 }
1822 to->nprincipals = from->nprincipals;
1823
1824 /* success */
1825 cert_free(to_key->cert);
1826 to_key->cert = to;
1827 to = NULL;
1828 r = 0;
1829 out:
1830 cert_free(to);
1831 return r;
1832 }
1833
1834 int
sshkey_from_private(const struct sshkey * k,struct sshkey ** pkp)1835 sshkey_from_private(const struct sshkey *k, struct sshkey **pkp)
1836 {
1837 struct sshkey *n = NULL;
1838 int r = SSH_ERR_INTERNAL_ERROR;
1839 #ifdef WITH_OPENSSL
1840 const BIGNUM *rsa_n, *rsa_e;
1841 BIGNUM *rsa_n_dup = NULL, *rsa_e_dup = NULL;
1842 const BIGNUM *dsa_p, *dsa_q, *dsa_g, *dsa_pub_key;
1843 BIGNUM *dsa_p_dup = NULL, *dsa_q_dup = NULL, *dsa_g_dup = NULL;
1844 BIGNUM *dsa_pub_key_dup = NULL;
1845 #endif /* WITH_OPENSSL */
1846
1847 *pkp = NULL;
1848 if ((n = sshkey_new(k->type)) == NULL) {
1849 r = SSH_ERR_ALLOC_FAIL;
1850 goto out;
1851 }
1852 switch (k->type) {
1853 #ifdef WITH_OPENSSL
1854 case KEY_DSA:
1855 case KEY_DSA_CERT:
1856 DSA_get0_pqg(k->dsa, &dsa_p, &dsa_q, &dsa_g);
1857 DSA_get0_key(k->dsa, &dsa_pub_key, NULL);
1858 if ((dsa_p_dup = BN_dup(dsa_p)) == NULL ||
1859 (dsa_q_dup = BN_dup(dsa_q)) == NULL ||
1860 (dsa_g_dup = BN_dup(dsa_g)) == NULL ||
1861 (dsa_pub_key_dup = BN_dup(dsa_pub_key)) == NULL) {
1862 r = SSH_ERR_ALLOC_FAIL;
1863 goto out;
1864 }
1865 if (!DSA_set0_pqg(n->dsa, dsa_p_dup, dsa_q_dup, dsa_g_dup)) {
1866 r = SSH_ERR_LIBCRYPTO_ERROR;
1867 goto out;
1868 }
1869 dsa_p_dup = dsa_q_dup = dsa_g_dup = NULL; /* transferred */
1870 if (!DSA_set0_key(n->dsa, dsa_pub_key_dup, NULL)) {
1871 r = SSH_ERR_LIBCRYPTO_ERROR;
1872 goto out;
1873 }
1874 dsa_pub_key_dup = NULL; /* transferred */
1875
1876 break;
1877 # ifdef OPENSSL_HAS_ECC
1878 case KEY_ECDSA:
1879 case KEY_ECDSA_CERT:
1880 case KEY_ECDSA_SK:
1881 case KEY_ECDSA_SK_CERT:
1882 n->ecdsa_nid = k->ecdsa_nid;
1883 n->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid);
1884 if (n->ecdsa == NULL) {
1885 r = SSH_ERR_ALLOC_FAIL;
1886 goto out;
1887 }
1888 if (EC_KEY_set_public_key(n->ecdsa,
1889 EC_KEY_get0_public_key(k->ecdsa)) != 1) {
1890 r = SSH_ERR_LIBCRYPTO_ERROR;
1891 goto out;
1892 }
1893 if (k->type != KEY_ECDSA_SK && k->type != KEY_ECDSA_SK_CERT)
1894 break;
1895 /* Append security-key application string */
1896 if ((n->sk_application = strdup(k->sk_application)) == NULL)
1897 goto out;
1898 break;
1899 # endif /* OPENSSL_HAS_ECC */
1900 case KEY_RSA:
1901 case KEY_RSA_CERT:
1902 RSA_get0_key(k->rsa, &rsa_n, &rsa_e, NULL);
1903 if ((rsa_n_dup = BN_dup(rsa_n)) == NULL ||
1904 (rsa_e_dup = BN_dup(rsa_e)) == NULL) {
1905 r = SSH_ERR_ALLOC_FAIL;
1906 goto out;
1907 }
1908 if (!RSA_set0_key(n->rsa, rsa_n_dup, rsa_e_dup, NULL)) {
1909 r = SSH_ERR_LIBCRYPTO_ERROR;
1910 goto out;
1911 }
1912 rsa_n_dup = rsa_e_dup = NULL; /* transferred */
1913 break;
1914 #endif /* WITH_OPENSSL */
1915 case KEY_ED25519:
1916 case KEY_ED25519_CERT:
1917 case KEY_ED25519_SK:
1918 case KEY_ED25519_SK_CERT:
1919 if (k->ed25519_pk != NULL) {
1920 if ((n->ed25519_pk = malloc(ED25519_PK_SZ)) == NULL) {
1921 r = SSH_ERR_ALLOC_FAIL;
1922 goto out;
1923 }
1924 memcpy(n->ed25519_pk, k->ed25519_pk, ED25519_PK_SZ);
1925 }
1926 if (k->type != KEY_ED25519_SK &&
1927 k->type != KEY_ED25519_SK_CERT)
1928 break;
1929 /* Append security-key application string */
1930 if ((n->sk_application = strdup(k->sk_application)) == NULL)
1931 goto out;
1932 break;
1933 #ifdef WITH_XMSS
1934 case KEY_XMSS:
1935 case KEY_XMSS_CERT:
1936 if ((r = sshkey_xmss_init(n, k->xmss_name)) != 0)
1937 goto out;
1938 if (k->xmss_pk != NULL) {
1939 u_int32_t left;
1940 size_t pklen = sshkey_xmss_pklen(k);
1941 if (pklen == 0 || sshkey_xmss_pklen(n) != pklen) {
1942 r = SSH_ERR_INTERNAL_ERROR;
1943 goto out;
1944 }
1945 if ((n->xmss_pk = malloc(pklen)) == NULL) {
1946 r = SSH_ERR_ALLOC_FAIL;
1947 goto out;
1948 }
1949 memcpy(n->xmss_pk, k->xmss_pk, pklen);
1950 /* simulate number of signatures left on pubkey */
1951 left = sshkey_xmss_signatures_left(k);
1952 if (left)
1953 sshkey_xmss_enable_maxsign(n, left);
1954 }
1955 break;
1956 #endif /* WITH_XMSS */
1957 default:
1958 r = SSH_ERR_KEY_TYPE_UNKNOWN;
1959 goto out;
1960 }
1961 if (sshkey_is_cert(k) && (r = sshkey_cert_copy(k, n)) != 0)
1962 goto out;
1963 /* success */
1964 *pkp = n;
1965 n = NULL;
1966 r = 0;
1967 out:
1968 sshkey_free(n);
1969 #ifdef WITH_OPENSSL
1970 BN_clear_free(rsa_n_dup);
1971 BN_clear_free(rsa_e_dup);
1972 BN_clear_free(dsa_p_dup);
1973 BN_clear_free(dsa_q_dup);
1974 BN_clear_free(dsa_g_dup);
1975 BN_clear_free(dsa_pub_key_dup);
1976 #endif
1977
1978 return r;
1979 }
1980
1981 int
sshkey_is_shielded(struct sshkey * k)1982 sshkey_is_shielded(struct sshkey *k)
1983 {
1984 return k != NULL && k->shielded_private != NULL;
1985 }
1986
1987 int
sshkey_shield_private(struct sshkey * k)1988 sshkey_shield_private(struct sshkey *k)
1989 {
1990 struct sshbuf *prvbuf = NULL;
1991 u_char *prekey = NULL, *enc = NULL, keyiv[SSH_DIGEST_MAX_LENGTH];
1992 struct sshcipher_ctx *cctx = NULL;
1993 const struct sshcipher *cipher;
1994 size_t i, enclen = 0;
1995 struct sshkey *kswap = NULL, tmp;
1996 int r = SSH_ERR_INTERNAL_ERROR;
1997
1998 #ifdef DEBUG_PK
1999 fprintf(stderr, "%s: entering for %s\n", __func__, sshkey_ssh_name(k));
2000 #endif
2001 if ((cipher = cipher_by_name(SSHKEY_SHIELD_CIPHER)) == NULL) {
2002 r = SSH_ERR_INVALID_ARGUMENT;
2003 goto out;
2004 }
2005 if (cipher_keylen(cipher) + cipher_ivlen(cipher) >
2006 ssh_digest_bytes(SSHKEY_SHIELD_PREKEY_HASH)) {
2007 r = SSH_ERR_INTERNAL_ERROR;
2008 goto out;
2009 }
2010
2011 /* Prepare a random pre-key, and from it an ephemeral key */
2012 if ((prekey = malloc(SSHKEY_SHIELD_PREKEY_LEN)) == NULL) {
2013 r = SSH_ERR_ALLOC_FAIL;
2014 goto out;
2015 }
2016 arc4random_buf(prekey, SSHKEY_SHIELD_PREKEY_LEN);
2017 if ((r = ssh_digest_memory(SSHKEY_SHIELD_PREKEY_HASH,
2018 prekey, SSHKEY_SHIELD_PREKEY_LEN,
2019 keyiv, SSH_DIGEST_MAX_LENGTH)) != 0)
2020 goto out;
2021 #ifdef DEBUG_PK
2022 fprintf(stderr, "%s: key+iv\n", __func__);
2023 sshbuf_dump_data(keyiv, ssh_digest_bytes(SSHKEY_SHIELD_PREKEY_HASH),
2024 stderr);
2025 #endif
2026 if ((r = cipher_init(&cctx, cipher, keyiv, cipher_keylen(cipher),
2027 keyiv + cipher_keylen(cipher), cipher_ivlen(cipher), 1)) != 0)
2028 goto out;
2029
2030 /* Serialise and encrypt the private key using the ephemeral key */
2031 if ((prvbuf = sshbuf_new()) == NULL) {
2032 r = SSH_ERR_ALLOC_FAIL;
2033 goto out;
2034 }
2035 if (sshkey_is_shielded(k) && (r = sshkey_unshield_private(k)) != 0)
2036 goto out;
2037 if ((r = sshkey_private_serialize_opt(k, prvbuf,
2038 SSHKEY_SERIALIZE_SHIELD)) != 0)
2039 goto out;
2040 /* pad to cipher blocksize */
2041 i = 0;
2042 while (sshbuf_len(prvbuf) % cipher_blocksize(cipher)) {
2043 if ((r = sshbuf_put_u8(prvbuf, ++i & 0xff)) != 0)
2044 goto out;
2045 }
2046 #ifdef DEBUG_PK
2047 fprintf(stderr, "%s: serialised\n", __func__);
2048 sshbuf_dump(prvbuf, stderr);
2049 #endif
2050 /* encrypt */
2051 enclen = sshbuf_len(prvbuf);
2052 if ((enc = malloc(enclen)) == NULL) {
2053 r = SSH_ERR_ALLOC_FAIL;
2054 goto out;
2055 }
2056 if ((r = cipher_crypt(cctx, 0, enc,
2057 sshbuf_ptr(prvbuf), sshbuf_len(prvbuf), 0, 0)) != 0)
2058 goto out;
2059 #ifdef DEBUG_PK
2060 fprintf(stderr, "%s: encrypted\n", __func__);
2061 sshbuf_dump_data(enc, enclen, stderr);
2062 #endif
2063
2064 /* Make a scrubbed, public-only copy of our private key argument */
2065 if ((r = sshkey_from_private(k, &kswap)) != 0)
2066 goto out;
2067
2068 /* Swap the private key out (it will be destroyed below) */
2069 tmp = *kswap;
2070 *kswap = *k;
2071 *k = tmp;
2072
2073 /* Insert the shielded key into our argument */
2074 k->shielded_private = enc;
2075 k->shielded_len = enclen;
2076 k->shield_prekey = prekey;
2077 k->shield_prekey_len = SSHKEY_SHIELD_PREKEY_LEN;
2078 enc = prekey = NULL; /* transferred */
2079 enclen = 0;
2080
2081 /* preserve key fields that are required for correct operation */
2082 k->sk_flags = kswap->sk_flags;
2083
2084 /* success */
2085 r = 0;
2086
2087 out:
2088 /* XXX behaviour on error - invalidate original private key? */
2089 cipher_free(cctx);
2090 explicit_bzero(keyiv, sizeof(keyiv));
2091 explicit_bzero(&tmp, sizeof(tmp));
2092 freezero(enc, enclen);
2093 freezero(prekey, SSHKEY_SHIELD_PREKEY_LEN);
2094 sshkey_free(kswap);
2095 sshbuf_free(prvbuf);
2096 return r;
2097 }
2098
2099 int
sshkey_unshield_private(struct sshkey * k)2100 sshkey_unshield_private(struct sshkey *k)
2101 {
2102 struct sshbuf *prvbuf = NULL;
2103 u_char pad, *cp, keyiv[SSH_DIGEST_MAX_LENGTH];
2104 struct sshcipher_ctx *cctx = NULL;
2105 const struct sshcipher *cipher;
2106 size_t i;
2107 struct sshkey *kswap = NULL, tmp;
2108 int r = SSH_ERR_INTERNAL_ERROR;
2109
2110 #ifdef DEBUG_PK
2111 fprintf(stderr, "%s: entering for %s\n", __func__, sshkey_ssh_name(k));
2112 #endif
2113 if (!sshkey_is_shielded(k))
2114 return 0; /* nothing to do */
2115
2116 if ((cipher = cipher_by_name(SSHKEY_SHIELD_CIPHER)) == NULL) {
2117 r = SSH_ERR_INVALID_ARGUMENT;
2118 goto out;
2119 }
2120 if (cipher_keylen(cipher) + cipher_ivlen(cipher) >
2121 ssh_digest_bytes(SSHKEY_SHIELD_PREKEY_HASH)) {
2122 r = SSH_ERR_INTERNAL_ERROR;
2123 goto out;
2124 }
2125 /* check size of shielded key blob */
2126 if (k->shielded_len < cipher_blocksize(cipher) ||
2127 (k->shielded_len % cipher_blocksize(cipher)) != 0) {
2128 r = SSH_ERR_INVALID_FORMAT;
2129 goto out;
2130 }
2131
2132 /* Calculate the ephemeral key from the prekey */
2133 if ((r = ssh_digest_memory(SSHKEY_SHIELD_PREKEY_HASH,
2134 k->shield_prekey, k->shield_prekey_len,
2135 keyiv, SSH_DIGEST_MAX_LENGTH)) != 0)
2136 goto out;
2137 if ((r = cipher_init(&cctx, cipher, keyiv, cipher_keylen(cipher),
2138 keyiv + cipher_keylen(cipher), cipher_ivlen(cipher), 0)) != 0)
2139 goto out;
2140 #ifdef DEBUG_PK
2141 fprintf(stderr, "%s: key+iv\n", __func__);
2142 sshbuf_dump_data(keyiv, ssh_digest_bytes(SSHKEY_SHIELD_PREKEY_HASH),
2143 stderr);
2144 #endif
2145
2146 /* Decrypt and parse the shielded private key using the ephemeral key */
2147 if ((prvbuf = sshbuf_new()) == NULL) {
2148 r = SSH_ERR_ALLOC_FAIL;
2149 goto out;
2150 }
2151 if ((r = sshbuf_reserve(prvbuf, k->shielded_len, &cp)) != 0)
2152 goto out;
2153 /* decrypt */
2154 #ifdef DEBUG_PK
2155 fprintf(stderr, "%s: encrypted\n", __func__);
2156 sshbuf_dump_data(k->shielded_private, k->shielded_len, stderr);
2157 #endif
2158 if ((r = cipher_crypt(cctx, 0, cp,
2159 k->shielded_private, k->shielded_len, 0, 0)) != 0)
2160 goto out;
2161 #ifdef DEBUG_PK
2162 fprintf(stderr, "%s: serialised\n", __func__);
2163 sshbuf_dump(prvbuf, stderr);
2164 #endif
2165 /* Parse private key */
2166 if ((r = sshkey_private_deserialize(prvbuf, &kswap)) != 0)
2167 goto out;
2168 /* Check deterministic padding */
2169 i = 0;
2170 while (sshbuf_len(prvbuf)) {
2171 if ((r = sshbuf_get_u8(prvbuf, &pad)) != 0)
2172 goto out;
2173 if (pad != (++i & 0xff)) {
2174 r = SSH_ERR_INVALID_FORMAT;
2175 goto out;
2176 }
2177 }
2178
2179 /* Swap the parsed key back into place */
2180 tmp = *kswap;
2181 *kswap = *k;
2182 *k = tmp;
2183
2184 /* success */
2185 r = 0;
2186
2187 out:
2188 cipher_free(cctx);
2189 explicit_bzero(keyiv, sizeof(keyiv));
2190 explicit_bzero(&tmp, sizeof(tmp));
2191 sshkey_free(kswap);
2192 sshbuf_free(prvbuf);
2193 return r;
2194 }
2195
2196 static int
cert_parse(struct sshbuf * b,struct sshkey * key,struct sshbuf * certbuf)2197 cert_parse(struct sshbuf *b, struct sshkey *key, struct sshbuf *certbuf)
2198 {
2199 struct sshbuf *principals = NULL, *crit = NULL;
2200 struct sshbuf *exts = NULL, *ca = NULL;
2201 u_char *sig = NULL;
2202 size_t signed_len = 0, slen = 0, kidlen = 0;
2203 int ret = SSH_ERR_INTERNAL_ERROR;
2204
2205 /* Copy the entire key blob for verification and later serialisation */
2206 if ((ret = sshbuf_putb(key->cert->certblob, certbuf)) != 0)
2207 return ret;
2208
2209 /* Parse body of certificate up to signature */
2210 if ((ret = sshbuf_get_u64(b, &key->cert->serial)) != 0 ||
2211 (ret = sshbuf_get_u32(b, &key->cert->type)) != 0 ||
2212 (ret = sshbuf_get_cstring(b, &key->cert->key_id, &kidlen)) != 0 ||
2213 (ret = sshbuf_froms(b, &principals)) != 0 ||
2214 (ret = sshbuf_get_u64(b, &key->cert->valid_after)) != 0 ||
2215 (ret = sshbuf_get_u64(b, &key->cert->valid_before)) != 0 ||
2216 (ret = sshbuf_froms(b, &crit)) != 0 ||
2217 (ret = sshbuf_froms(b, &exts)) != 0 ||
2218 (ret = sshbuf_get_string_direct(b, NULL, NULL)) != 0 ||
2219 (ret = sshbuf_froms(b, &ca)) != 0) {
2220 /* XXX debug print error for ret */
2221 ret = SSH_ERR_INVALID_FORMAT;
2222 goto out;
2223 }
2224
2225 /* Signature is left in the buffer so we can calculate this length */
2226 signed_len = sshbuf_len(key->cert->certblob) - sshbuf_len(b);
2227
2228 if ((ret = sshbuf_get_string(b, &sig, &slen)) != 0) {
2229 ret = SSH_ERR_INVALID_FORMAT;
2230 goto out;
2231 }
2232
2233 if (key->cert->type != SSH2_CERT_TYPE_USER &&
2234 key->cert->type != SSH2_CERT_TYPE_HOST) {
2235 ret = SSH_ERR_KEY_CERT_UNKNOWN_TYPE;
2236 goto out;
2237 }
2238
2239 /* Parse principals section */
2240 while (sshbuf_len(principals) > 0) {
2241 char *principal = NULL;
2242 char **oprincipals = NULL;
2243
2244 if (key->cert->nprincipals >= SSHKEY_CERT_MAX_PRINCIPALS) {
2245 ret = SSH_ERR_INVALID_FORMAT;
2246 goto out;
2247 }
2248 if ((ret = sshbuf_get_cstring(principals, &principal,
2249 NULL)) != 0) {
2250 ret = SSH_ERR_INVALID_FORMAT;
2251 goto out;
2252 }
2253 oprincipals = key->cert->principals;
2254 key->cert->principals = recallocarray(key->cert->principals,
2255 key->cert->nprincipals, key->cert->nprincipals + 1,
2256 sizeof(*key->cert->principals));
2257 if (key->cert->principals == NULL) {
2258 free(principal);
2259 key->cert->principals = oprincipals;
2260 ret = SSH_ERR_ALLOC_FAIL;
2261 goto out;
2262 }
2263 key->cert->principals[key->cert->nprincipals++] = principal;
2264 }
2265
2266 /*
2267 * Stash a copies of the critical options and extensions sections
2268 * for later use.
2269 */
2270 if ((ret = sshbuf_putb(key->cert->critical, crit)) != 0 ||
2271 (exts != NULL &&
2272 (ret = sshbuf_putb(key->cert->extensions, exts)) != 0))
2273 goto out;
2274
2275 /*
2276 * Validate critical options and extensions sections format.
2277 */
2278 while (sshbuf_len(crit) != 0) {
2279 if ((ret = sshbuf_get_string_direct(crit, NULL, NULL)) != 0 ||
2280 (ret = sshbuf_get_string_direct(crit, NULL, NULL)) != 0) {
2281 sshbuf_reset(key->cert->critical);
2282 ret = SSH_ERR_INVALID_FORMAT;
2283 goto out;
2284 }
2285 }
2286 while (exts != NULL && sshbuf_len(exts) != 0) {
2287 if ((ret = sshbuf_get_string_direct(exts, NULL, NULL)) != 0 ||
2288 (ret = sshbuf_get_string_direct(exts, NULL, NULL)) != 0) {
2289 sshbuf_reset(key->cert->extensions);
2290 ret = SSH_ERR_INVALID_FORMAT;
2291 goto out;
2292 }
2293 }
2294
2295 /* Parse CA key and check signature */
2296 if (sshkey_from_blob_internal(ca, &key->cert->signature_key, 0) != 0) {
2297 ret = SSH_ERR_KEY_CERT_INVALID_SIGN_KEY;
2298 goto out;
2299 }
2300 if (!sshkey_type_is_valid_ca(key->cert->signature_key->type)) {
2301 ret = SSH_ERR_KEY_CERT_INVALID_SIGN_KEY;
2302 goto out;
2303 }
2304 if ((ret = sshkey_verify(key->cert->signature_key, sig, slen,
2305 sshbuf_ptr(key->cert->certblob), signed_len, NULL, 0, NULL)) != 0)
2306 goto out;
2307 if ((ret = sshkey_get_sigtype(sig, slen,
2308 &key->cert->signature_type)) != 0)
2309 goto out;
2310
2311 /* Success */
2312 ret = 0;
2313 out:
2314 sshbuf_free(ca);
2315 sshbuf_free(crit);
2316 sshbuf_free(exts);
2317 sshbuf_free(principals);
2318 free(sig);
2319 return ret;
2320 }
2321
2322 #ifdef WITH_OPENSSL
2323 static int
check_rsa_length(const RSA * rsa)2324 check_rsa_length(const RSA *rsa)
2325 {
2326 const BIGNUM *rsa_n;
2327
2328 RSA_get0_key(rsa, &rsa_n, NULL, NULL);
2329 if (BN_num_bits(rsa_n) < SSH_RSA_MINIMUM_MODULUS_SIZE)
2330 return SSH_ERR_KEY_LENGTH;
2331 return 0;
2332 }
2333 #endif
2334
2335 static int
sshkey_from_blob_internal(struct sshbuf * b,struct sshkey ** keyp,int allow_cert)2336 sshkey_from_blob_internal(struct sshbuf *b, struct sshkey **keyp,
2337 int allow_cert)
2338 {
2339 int type, ret = SSH_ERR_INTERNAL_ERROR;
2340 char *ktype = NULL, *curve = NULL, *xmss_name = NULL;
2341 struct sshkey *key = NULL;
2342 size_t len;
2343 u_char *pk = NULL;
2344 struct sshbuf *copy;
2345 #if defined(WITH_OPENSSL)
2346 BIGNUM *rsa_n = NULL, *rsa_e = NULL;
2347 BIGNUM *dsa_p = NULL, *dsa_q = NULL, *dsa_g = NULL, *dsa_pub_key = NULL;
2348 # if defined(OPENSSL_HAS_ECC)
2349 EC_POINT *q = NULL;
2350 # endif /* OPENSSL_HAS_ECC */
2351 #endif /* WITH_OPENSSL */
2352
2353 #ifdef DEBUG_PK /* XXX */
2354 sshbuf_dump(b, stderr);
2355 #endif
2356 if (keyp != NULL)
2357 *keyp = NULL;
2358 if ((copy = sshbuf_fromb(b)) == NULL) {
2359 ret = SSH_ERR_ALLOC_FAIL;
2360 goto out;
2361 }
2362 if (sshbuf_get_cstring(b, &ktype, NULL) != 0) {
2363 ret = SSH_ERR_INVALID_FORMAT;
2364 goto out;
2365 }
2366
2367 type = sshkey_type_from_name(ktype);
2368 if (!allow_cert && sshkey_type_is_cert(type)) {
2369 ret = SSH_ERR_KEY_CERT_INVALID_SIGN_KEY;
2370 goto out;
2371 }
2372 switch (type) {
2373 #ifdef WITH_OPENSSL
2374 case KEY_RSA_CERT:
2375 /* Skip nonce */
2376 if (sshbuf_get_string_direct(b, NULL, NULL) != 0) {
2377 ret = SSH_ERR_INVALID_FORMAT;
2378 goto out;
2379 }
2380 /* FALLTHROUGH */
2381 case KEY_RSA:
2382 if ((key = sshkey_new(type)) == NULL) {
2383 ret = SSH_ERR_ALLOC_FAIL;
2384 goto out;
2385 }
2386 if (sshbuf_get_bignum2(b, &rsa_e) != 0 ||
2387 sshbuf_get_bignum2(b, &rsa_n) != 0) {
2388 ret = SSH_ERR_INVALID_FORMAT;
2389 goto out;
2390 }
2391 if (!RSA_set0_key(key->rsa, rsa_n, rsa_e, NULL)) {
2392 ret = SSH_ERR_LIBCRYPTO_ERROR;
2393 goto out;
2394 }
2395 rsa_n = rsa_e = NULL; /* transferred */
2396 if ((ret = check_rsa_length(key->rsa)) != 0)
2397 goto out;
2398 #ifdef DEBUG_PK
2399 RSA_print_fp(stderr, key->rsa, 8);
2400 #endif
2401 break;
2402 case KEY_DSA_CERT:
2403 /* Skip nonce */
2404 if (sshbuf_get_string_direct(b, NULL, NULL) != 0) {
2405 ret = SSH_ERR_INVALID_FORMAT;
2406 goto out;
2407 }
2408 /* FALLTHROUGH */
2409 case KEY_DSA:
2410 if ((key = sshkey_new(type)) == NULL) {
2411 ret = SSH_ERR_ALLOC_FAIL;
2412 goto out;
2413 }
2414 if (sshbuf_get_bignum2(b, &dsa_p) != 0 ||
2415 sshbuf_get_bignum2(b, &dsa_q) != 0 ||
2416 sshbuf_get_bignum2(b, &dsa_g) != 0 ||
2417 sshbuf_get_bignum2(b, &dsa_pub_key) != 0) {
2418 ret = SSH_ERR_INVALID_FORMAT;
2419 goto out;
2420 }
2421 if (!DSA_set0_pqg(key->dsa, dsa_p, dsa_q, dsa_g)) {
2422 ret = SSH_ERR_LIBCRYPTO_ERROR;
2423 goto out;
2424 }
2425 dsa_p = dsa_q = dsa_g = NULL; /* transferred */
2426 if (!DSA_set0_key(key->dsa, dsa_pub_key, NULL)) {
2427 ret = SSH_ERR_LIBCRYPTO_ERROR;
2428 goto out;
2429 }
2430 dsa_pub_key = NULL; /* transferred */
2431 #ifdef DEBUG_PK
2432 DSA_print_fp(stderr, key->dsa, 8);
2433 #endif
2434 break;
2435 # ifdef OPENSSL_HAS_ECC
2436 case KEY_ECDSA_CERT:
2437 case KEY_ECDSA_SK_CERT:
2438 /* Skip nonce */
2439 if (sshbuf_get_string_direct(b, NULL, NULL) != 0) {
2440 ret = SSH_ERR_INVALID_FORMAT;
2441 goto out;
2442 }
2443 /* FALLTHROUGH */
2444 case KEY_ECDSA:
2445 case KEY_ECDSA_SK:
2446 if ((key = sshkey_new(type)) == NULL) {
2447 ret = SSH_ERR_ALLOC_FAIL;
2448 goto out;
2449 }
2450 key->ecdsa_nid = sshkey_ecdsa_nid_from_name(ktype);
2451 if (sshbuf_get_cstring(b, &curve, NULL) != 0) {
2452 ret = SSH_ERR_INVALID_FORMAT;
2453 goto out;
2454 }
2455 if (key->ecdsa_nid != sshkey_curve_name_to_nid(curve)) {
2456 ret = SSH_ERR_EC_CURVE_MISMATCH;
2457 goto out;
2458 }
2459 EC_KEY_free(key->ecdsa);
2460 if ((key->ecdsa = EC_KEY_new_by_curve_name(key->ecdsa_nid))
2461 == NULL) {
2462 ret = SSH_ERR_EC_CURVE_INVALID;
2463 goto out;
2464 }
2465 if ((q = EC_POINT_new(EC_KEY_get0_group(key->ecdsa))) == NULL) {
2466 ret = SSH_ERR_ALLOC_FAIL;
2467 goto out;
2468 }
2469 if (sshbuf_get_ec(b, q, EC_KEY_get0_group(key->ecdsa)) != 0) {
2470 ret = SSH_ERR_INVALID_FORMAT;
2471 goto out;
2472 }
2473 if (sshkey_ec_validate_public(EC_KEY_get0_group(key->ecdsa),
2474 q) != 0) {
2475 ret = SSH_ERR_KEY_INVALID_EC_VALUE;
2476 goto out;
2477 }
2478 if (EC_KEY_set_public_key(key->ecdsa, q) != 1) {
2479 /* XXX assume it is a allocation error */
2480 ret = SSH_ERR_ALLOC_FAIL;
2481 goto out;
2482 }
2483 #ifdef DEBUG_PK
2484 sshkey_dump_ec_point(EC_KEY_get0_group(key->ecdsa), q);
2485 #endif
2486 if (type == KEY_ECDSA_SK || type == KEY_ECDSA_SK_CERT) {
2487 /* Parse additional security-key application string */
2488 if (sshbuf_get_cstring(b, &key->sk_application,
2489 NULL) != 0) {
2490 ret = SSH_ERR_INVALID_FORMAT;
2491 goto out;
2492 }
2493 #ifdef DEBUG_PK
2494 fprintf(stderr, "App: %s\n", key->sk_application);
2495 #endif
2496 }
2497 break;
2498 # endif /* OPENSSL_HAS_ECC */
2499 #endif /* WITH_OPENSSL */
2500 case KEY_ED25519_CERT:
2501 case KEY_ED25519_SK_CERT:
2502 /* Skip nonce */
2503 if (sshbuf_get_string_direct(b, NULL, NULL) != 0) {
2504 ret = SSH_ERR_INVALID_FORMAT;
2505 goto out;
2506 }
2507 /* FALLTHROUGH */
2508 case KEY_ED25519:
2509 case KEY_ED25519_SK:
2510 if ((ret = sshbuf_get_string(b, &pk, &len)) != 0)
2511 goto out;
2512 if (len != ED25519_PK_SZ) {
2513 ret = SSH_ERR_INVALID_FORMAT;
2514 goto out;
2515 }
2516 if ((key = sshkey_new(type)) == NULL) {
2517 ret = SSH_ERR_ALLOC_FAIL;
2518 goto out;
2519 }
2520 if (type == KEY_ED25519_SK || type == KEY_ED25519_SK_CERT) {
2521 /* Parse additional security-key application string */
2522 if (sshbuf_get_cstring(b, &key->sk_application,
2523 NULL) != 0) {
2524 ret = SSH_ERR_INVALID_FORMAT;
2525 goto out;
2526 }
2527 #ifdef DEBUG_PK
2528 fprintf(stderr, "App: %s\n", key->sk_application);
2529 #endif
2530 }
2531 key->ed25519_pk = pk;
2532 pk = NULL;
2533 break;
2534 #ifdef WITH_XMSS
2535 case KEY_XMSS_CERT:
2536 /* Skip nonce */
2537 if (sshbuf_get_string_direct(b, NULL, NULL) != 0) {
2538 ret = SSH_ERR_INVALID_FORMAT;
2539 goto out;
2540 }
2541 /* FALLTHROUGH */
2542 case KEY_XMSS:
2543 if ((ret = sshbuf_get_cstring(b, &xmss_name, NULL)) != 0)
2544 goto out;
2545 if ((key = sshkey_new(type)) == NULL) {
2546 ret = SSH_ERR_ALLOC_FAIL;
2547 goto out;
2548 }
2549 if ((ret = sshkey_xmss_init(key, xmss_name)) != 0)
2550 goto out;
2551 if ((ret = sshbuf_get_string(b, &pk, &len)) != 0)
2552 goto out;
2553 if (len == 0 || len != sshkey_xmss_pklen(key)) {
2554 ret = SSH_ERR_INVALID_FORMAT;
2555 goto out;
2556 }
2557 key->xmss_pk = pk;
2558 pk = NULL;
2559 if (type != KEY_XMSS_CERT &&
2560 (ret = sshkey_xmss_deserialize_pk_info(key, b)) != 0)
2561 goto out;
2562 break;
2563 #endif /* WITH_XMSS */
2564 case KEY_UNSPEC:
2565 default:
2566 ret = SSH_ERR_KEY_TYPE_UNKNOWN;
2567 goto out;
2568 }
2569
2570 /* Parse certificate potion */
2571 if (sshkey_is_cert(key) && (ret = cert_parse(b, key, copy)) != 0)
2572 goto out;
2573
2574 if (key != NULL && sshbuf_len(b) != 0) {
2575 ret = SSH_ERR_INVALID_FORMAT;
2576 goto out;
2577 }
2578 ret = 0;
2579 if (keyp != NULL) {
2580 *keyp = key;
2581 key = NULL;
2582 }
2583 out:
2584 sshbuf_free(copy);
2585 sshkey_free(key);
2586 free(xmss_name);
2587 free(ktype);
2588 free(curve);
2589 free(pk);
2590 #if defined(WITH_OPENSSL)
2591 BN_clear_free(rsa_n);
2592 BN_clear_free(rsa_e);
2593 BN_clear_free(dsa_p);
2594 BN_clear_free(dsa_q);
2595 BN_clear_free(dsa_g);
2596 BN_clear_free(dsa_pub_key);
2597 # if defined(OPENSSL_HAS_ECC)
2598 EC_POINT_free(q);
2599 # endif /* OPENSSL_HAS_ECC */
2600 #endif /* WITH_OPENSSL */
2601 return ret;
2602 }
2603
2604 int
sshkey_from_blob(const u_char * blob,size_t blen,struct sshkey ** keyp)2605 sshkey_from_blob(const u_char *blob, size_t blen, struct sshkey **keyp)
2606 {
2607 struct sshbuf *b;
2608 int r;
2609
2610 if ((b = sshbuf_from(blob, blen)) == NULL)
2611 return SSH_ERR_ALLOC_FAIL;
2612 r = sshkey_from_blob_internal(b, keyp, 1);
2613 sshbuf_free(b);
2614 return r;
2615 }
2616
2617 int
sshkey_fromb(struct sshbuf * b,struct sshkey ** keyp)2618 sshkey_fromb(struct sshbuf *b, struct sshkey **keyp)
2619 {
2620 return sshkey_from_blob_internal(b, keyp, 1);
2621 }
2622
2623 int
sshkey_froms(struct sshbuf * buf,struct sshkey ** keyp)2624 sshkey_froms(struct sshbuf *buf, struct sshkey **keyp)
2625 {
2626 struct sshbuf *b;
2627 int r;
2628
2629 if ((r = sshbuf_froms(buf, &b)) != 0)
2630 return r;
2631 r = sshkey_from_blob_internal(b, keyp, 1);
2632 sshbuf_free(b);
2633 return r;
2634 }
2635
2636 int
sshkey_get_sigtype(const u_char * sig,size_t siglen,char ** sigtypep)2637 sshkey_get_sigtype(const u_char *sig, size_t siglen, char **sigtypep)
2638 {
2639 int r;
2640 struct sshbuf *b = NULL;
2641 char *sigtype = NULL;
2642
2643 if (sigtypep != NULL)
2644 *sigtypep = NULL;
2645 if ((b = sshbuf_from(sig, siglen)) == NULL)
2646 return SSH_ERR_ALLOC_FAIL;
2647 if ((r = sshbuf_get_cstring(b, &sigtype, NULL)) != 0)
2648 goto out;
2649 /* success */
2650 if (sigtypep != NULL) {
2651 *sigtypep = sigtype;
2652 sigtype = NULL;
2653 }
2654 r = 0;
2655 out:
2656 free(sigtype);
2657 sshbuf_free(b);
2658 return r;
2659 }
2660
2661 /*
2662 *
2663 * Checks whether a certificate's signature type is allowed.
2664 * Returns 0 (success) if the certificate signature type appears in the
2665 * "allowed" pattern-list, or the key is not a certificate to begin with.
2666 * Otherwise returns a ssherr.h code.
2667 */
2668 int
sshkey_check_cert_sigtype(const struct sshkey * key,const char * allowed)2669 sshkey_check_cert_sigtype(const struct sshkey *key, const char *allowed)
2670 {
2671 if (key == NULL || allowed == NULL)
2672 return SSH_ERR_INVALID_ARGUMENT;
2673 if (!sshkey_type_is_cert(key->type))
2674 return 0;
2675 if (key->cert == NULL || key->cert->signature_type == NULL)
2676 return SSH_ERR_INVALID_ARGUMENT;
2677 if (match_pattern_list(key->cert->signature_type, allowed, 0) != 1)
2678 return SSH_ERR_SIGN_ALG_UNSUPPORTED;
2679 return 0;
2680 }
2681
2682 /*
2683 * Returns the expected signature algorithm for a given public key algorithm.
2684 */
2685 const char *
sshkey_sigalg_by_name(const char * name)2686 sshkey_sigalg_by_name(const char *name)
2687 {
2688 const struct keytype *kt;
2689
2690 for (kt = keytypes; kt->type != -1; kt++) {
2691 if (strcmp(kt->name, name) != 0)
2692 continue;
2693 if (kt->sigalg != NULL)
2694 return kt->sigalg;
2695 if (!kt->cert)
2696 return kt->name;
2697 return sshkey_ssh_name_from_type_nid(
2698 sshkey_type_plain(kt->type), kt->nid);
2699 }
2700 return NULL;
2701 }
2702
2703 /*
2704 * Verifies that the signature algorithm appearing inside the signature blob
2705 * matches that which was requested.
2706 */
2707 int
sshkey_check_sigtype(const u_char * sig,size_t siglen,const char * requested_alg)2708 sshkey_check_sigtype(const u_char *sig, size_t siglen,
2709 const char *requested_alg)
2710 {
2711 const char *expected_alg;
2712 char *sigtype = NULL;
2713 int r;
2714
2715 if (requested_alg == NULL)
2716 return 0;
2717 if ((expected_alg = sshkey_sigalg_by_name(requested_alg)) == NULL)
2718 return SSH_ERR_INVALID_ARGUMENT;
2719 if ((r = sshkey_get_sigtype(sig, siglen, &sigtype)) != 0)
2720 return r;
2721 r = strcmp(expected_alg, sigtype) == 0;
2722 free(sigtype);
2723 return r ? 0 : SSH_ERR_SIGN_ALG_UNSUPPORTED;
2724 }
2725
2726 int
sshkey_sign(struct sshkey * key,u_char ** sigp,size_t * lenp,const u_char * data,size_t datalen,const char * alg,const char * sk_provider,const char * sk_pin,u_int compat)2727 sshkey_sign(struct sshkey *key,
2728 u_char **sigp, size_t *lenp,
2729 const u_char *data, size_t datalen,
2730 const char *alg, const char *sk_provider, const char *sk_pin, u_int compat)
2731 {
2732 int was_shielded = sshkey_is_shielded(key);
2733 int r2, r = SSH_ERR_INTERNAL_ERROR;
2734
2735 if (sigp != NULL)
2736 *sigp = NULL;
2737 if (lenp != NULL)
2738 *lenp = 0;
2739 if (datalen > SSH_KEY_MAX_SIGN_DATA_SIZE)
2740 return SSH_ERR_INVALID_ARGUMENT;
2741 if ((r = sshkey_unshield_private(key)) != 0)
2742 return r;
2743 switch (key->type) {
2744 #ifdef WITH_OPENSSL
2745 case KEY_DSA_CERT:
2746 case KEY_DSA:
2747 r = ssh_dss_sign(key, sigp, lenp, data, datalen, compat);
2748 break;
2749 # ifdef OPENSSL_HAS_ECC
2750 case KEY_ECDSA_CERT:
2751 case KEY_ECDSA:
2752 r = ssh_ecdsa_sign(key, sigp, lenp, data, datalen, compat);
2753 break;
2754 # endif /* OPENSSL_HAS_ECC */
2755 case KEY_RSA_CERT:
2756 case KEY_RSA:
2757 r = ssh_rsa_sign(key, sigp, lenp, data, datalen, alg);
2758 break;
2759 #endif /* WITH_OPENSSL */
2760 case KEY_ED25519:
2761 case KEY_ED25519_CERT:
2762 r = ssh_ed25519_sign(key, sigp, lenp, data, datalen, compat);
2763 break;
2764 case KEY_ED25519_SK:
2765 case KEY_ED25519_SK_CERT:
2766 case KEY_ECDSA_SK_CERT:
2767 case KEY_ECDSA_SK:
2768 r = sshsk_sign(sk_provider, key, sigp, lenp, data,
2769 datalen, compat, sk_pin);
2770 break;
2771 #ifdef WITH_XMSS
2772 case KEY_XMSS:
2773 case KEY_XMSS_CERT:
2774 r = ssh_xmss_sign(key, sigp, lenp, data, datalen, compat);
2775 break;
2776 #endif /* WITH_XMSS */
2777 default:
2778 r = SSH_ERR_KEY_TYPE_UNKNOWN;
2779 break;
2780 }
2781 if (was_shielded && (r2 = sshkey_shield_private(key)) != 0)
2782 return r2;
2783 return r;
2784 }
2785
2786 /*
2787 * ssh_key_verify returns 0 for a correct signature and < 0 on error.
2788 * If "alg" specified, then the signature must use that algorithm.
2789 */
2790 int
sshkey_verify(const struct sshkey * key,const u_char * sig,size_t siglen,const u_char * data,size_t dlen,const char * alg,u_int compat,struct sshkey_sig_details ** detailsp)2791 sshkey_verify(const struct sshkey *key,
2792 const u_char *sig, size_t siglen,
2793 const u_char *data, size_t dlen, const char *alg, u_int compat,
2794 struct sshkey_sig_details **detailsp)
2795 {
2796 if (detailsp != NULL)
2797 *detailsp = NULL;
2798 if (siglen == 0 || dlen > SSH_KEY_MAX_SIGN_DATA_SIZE)
2799 return SSH_ERR_INVALID_ARGUMENT;
2800 switch (key->type) {
2801 #ifdef WITH_OPENSSL
2802 case KEY_DSA_CERT:
2803 case KEY_DSA:
2804 return ssh_dss_verify(key, sig, siglen, data, dlen, compat);
2805 # ifdef OPENSSL_HAS_ECC
2806 case KEY_ECDSA_CERT:
2807 case KEY_ECDSA:
2808 return ssh_ecdsa_verify(key, sig, siglen, data, dlen, compat);
2809 case KEY_ECDSA_SK_CERT:
2810 case KEY_ECDSA_SK:
2811 return ssh_ecdsa_sk_verify(key, sig, siglen, data, dlen,
2812 compat, detailsp);
2813 # endif /* OPENSSL_HAS_ECC */
2814 case KEY_RSA_CERT:
2815 case KEY_RSA:
2816 return ssh_rsa_verify(key, sig, siglen, data, dlen, alg);
2817 #endif /* WITH_OPENSSL */
2818 case KEY_ED25519:
2819 case KEY_ED25519_CERT:
2820 return ssh_ed25519_verify(key, sig, siglen, data, dlen, compat);
2821 case KEY_ED25519_SK:
2822 case KEY_ED25519_SK_CERT:
2823 return ssh_ed25519_sk_verify(key, sig, siglen, data, dlen,
2824 compat, detailsp);
2825 #ifdef WITH_XMSS
2826 case KEY_XMSS:
2827 case KEY_XMSS_CERT:
2828 return ssh_xmss_verify(key, sig, siglen, data, dlen, compat);
2829 #endif /* WITH_XMSS */
2830 default:
2831 return SSH_ERR_KEY_TYPE_UNKNOWN;
2832 }
2833 }
2834
2835 /* Convert a plain key to their _CERT equivalent */
2836 int
sshkey_to_certified(struct sshkey * k)2837 sshkey_to_certified(struct sshkey *k)
2838 {
2839 int newtype;
2840
2841 switch (k->type) {
2842 #ifdef WITH_OPENSSL
2843 case KEY_RSA:
2844 newtype = KEY_RSA_CERT;
2845 break;
2846 case KEY_DSA:
2847 newtype = KEY_DSA_CERT;
2848 break;
2849 case KEY_ECDSA:
2850 newtype = KEY_ECDSA_CERT;
2851 break;
2852 case KEY_ECDSA_SK:
2853 newtype = KEY_ECDSA_SK_CERT;
2854 break;
2855 #endif /* WITH_OPENSSL */
2856 case KEY_ED25519_SK:
2857 newtype = KEY_ED25519_SK_CERT;
2858 break;
2859 case KEY_ED25519:
2860 newtype = KEY_ED25519_CERT;
2861 break;
2862 #ifdef WITH_XMSS
2863 case KEY_XMSS:
2864 newtype = KEY_XMSS_CERT;
2865 break;
2866 #endif /* WITH_XMSS */
2867 default:
2868 return SSH_ERR_INVALID_ARGUMENT;
2869 }
2870 if ((k->cert = cert_new()) == NULL)
2871 return SSH_ERR_ALLOC_FAIL;
2872 k->type = newtype;
2873 return 0;
2874 }
2875
2876 /* Convert a certificate to its raw key equivalent */
2877 int
sshkey_drop_cert(struct sshkey * k)2878 sshkey_drop_cert(struct sshkey *k)
2879 {
2880 if (!sshkey_type_is_cert(k->type))
2881 return SSH_ERR_KEY_TYPE_UNKNOWN;
2882 cert_free(k->cert);
2883 k->cert = NULL;
2884 k->type = sshkey_type_plain(k->type);
2885 return 0;
2886 }
2887
2888 /* Sign a certified key, (re-)generating the signed certblob. */
2889 int
sshkey_certify_custom(struct sshkey * k,struct sshkey * ca,const char * alg,const char * sk_provider,const char * sk_pin,sshkey_certify_signer * signer,void * signer_ctx)2890 sshkey_certify_custom(struct sshkey *k, struct sshkey *ca, const char *alg,
2891 const char *sk_provider, const char *sk_pin,
2892 sshkey_certify_signer *signer, void *signer_ctx)
2893 {
2894 struct sshbuf *principals = NULL;
2895 u_char *ca_blob = NULL, *sig_blob = NULL, nonce[32];
2896 size_t i, ca_len, sig_len;
2897 int ret = SSH_ERR_INTERNAL_ERROR;
2898 struct sshbuf *cert = NULL;
2899 char *sigtype = NULL;
2900 #ifdef WITH_OPENSSL
2901 const BIGNUM *rsa_n, *rsa_e, *dsa_p, *dsa_q, *dsa_g, *dsa_pub_key;
2902 #endif /* WITH_OPENSSL */
2903
2904 if (k == NULL || k->cert == NULL ||
2905 k->cert->certblob == NULL || ca == NULL)
2906 return SSH_ERR_INVALID_ARGUMENT;
2907 if (!sshkey_is_cert(k))
2908 return SSH_ERR_KEY_TYPE_UNKNOWN;
2909 if (!sshkey_type_is_valid_ca(ca->type))
2910 return SSH_ERR_KEY_CERT_INVALID_SIGN_KEY;
2911
2912 /*
2913 * If no alg specified as argument but a signature_type was set,
2914 * then prefer that. If both were specified, then they must match.
2915 */
2916 if (alg == NULL)
2917 alg = k->cert->signature_type;
2918 else if (k->cert->signature_type != NULL &&
2919 strcmp(alg, k->cert->signature_type) != 0)
2920 return SSH_ERR_INVALID_ARGUMENT;
2921
2922 /*
2923 * If no signing algorithm or signature_type was specified and we're
2924 * using a RSA key, then default to a good signature algorithm.
2925 */
2926 if (alg == NULL && ca->type == KEY_RSA)
2927 alg = "rsa-sha2-512";
2928
2929 if ((ret = sshkey_to_blob(ca, &ca_blob, &ca_len)) != 0)
2930 return SSH_ERR_KEY_CERT_INVALID_SIGN_KEY;
2931
2932 cert = k->cert->certblob; /* for readability */
2933 sshbuf_reset(cert);
2934 if ((ret = sshbuf_put_cstring(cert, sshkey_ssh_name(k))) != 0)
2935 goto out;
2936
2937 /* -v01 certs put nonce first */
2938 arc4random_buf(&nonce, sizeof(nonce));
2939 if ((ret = sshbuf_put_string(cert, nonce, sizeof(nonce))) != 0)
2940 goto out;
2941
2942 /* XXX this substantially duplicates to_blob(); refactor */
2943 switch (k->type) {
2944 #ifdef WITH_OPENSSL
2945 case KEY_DSA_CERT:
2946 DSA_get0_pqg(k->dsa, &dsa_p, &dsa_q, &dsa_g);
2947 DSA_get0_key(k->dsa, &dsa_pub_key, NULL);
2948 if ((ret = sshbuf_put_bignum2(cert, dsa_p)) != 0 ||
2949 (ret = sshbuf_put_bignum2(cert, dsa_q)) != 0 ||
2950 (ret = sshbuf_put_bignum2(cert, dsa_g)) != 0 ||
2951 (ret = sshbuf_put_bignum2(cert, dsa_pub_key)) != 0)
2952 goto out;
2953 break;
2954 # ifdef OPENSSL_HAS_ECC
2955 case KEY_ECDSA_CERT:
2956 case KEY_ECDSA_SK_CERT:
2957 if ((ret = sshbuf_put_cstring(cert,
2958 sshkey_curve_nid_to_name(k->ecdsa_nid))) != 0 ||
2959 (ret = sshbuf_put_ec(cert,
2960 EC_KEY_get0_public_key(k->ecdsa),
2961 EC_KEY_get0_group(k->ecdsa))) != 0)
2962 goto out;
2963 if (k->type == KEY_ECDSA_SK_CERT) {
2964 if ((ret = sshbuf_put_cstring(cert,
2965 k->sk_application)) != 0)
2966 goto out;
2967 }
2968 break;
2969 # endif /* OPENSSL_HAS_ECC */
2970 case KEY_RSA_CERT:
2971 RSA_get0_key(k->rsa, &rsa_n, &rsa_e, NULL);
2972 if ((ret = sshbuf_put_bignum2(cert, rsa_e)) != 0 ||
2973 (ret = sshbuf_put_bignum2(cert, rsa_n)) != 0)
2974 goto out;
2975 break;
2976 #endif /* WITH_OPENSSL */
2977 case KEY_ED25519_CERT:
2978 case KEY_ED25519_SK_CERT:
2979 if ((ret = sshbuf_put_string(cert,
2980 k->ed25519_pk, ED25519_PK_SZ)) != 0)
2981 goto out;
2982 if (k->type == KEY_ED25519_SK_CERT) {
2983 if ((ret = sshbuf_put_cstring(cert,
2984 k->sk_application)) != 0)
2985 goto out;
2986 }
2987 break;
2988 #ifdef WITH_XMSS
2989 case KEY_XMSS_CERT:
2990 if (k->xmss_name == NULL) {
2991 ret = SSH_ERR_INVALID_ARGUMENT;
2992 goto out;
2993 }
2994 if ((ret = sshbuf_put_cstring(cert, k->xmss_name)) ||
2995 (ret = sshbuf_put_string(cert,
2996 k->xmss_pk, sshkey_xmss_pklen(k))) != 0)
2997 goto out;
2998 break;
2999 #endif /* WITH_XMSS */
3000 default:
3001 ret = SSH_ERR_INVALID_ARGUMENT;
3002 goto out;
3003 }
3004
3005 if ((ret = sshbuf_put_u64(cert, k->cert->serial)) != 0 ||
3006 (ret = sshbuf_put_u32(cert, k->cert->type)) != 0 ||
3007 (ret = sshbuf_put_cstring(cert, k->cert->key_id)) != 0)
3008 goto out;
3009
3010 if ((principals = sshbuf_new()) == NULL) {
3011 ret = SSH_ERR_ALLOC_FAIL;
3012 goto out;
3013 }
3014 for (i = 0; i < k->cert->nprincipals; i++) {
3015 if ((ret = sshbuf_put_cstring(principals,
3016 k->cert->principals[i])) != 0)
3017 goto out;
3018 }
3019 if ((ret = sshbuf_put_stringb(cert, principals)) != 0 ||
3020<