xref: /openssh-portable/openbsd-compat/sha2.c (revision 13b33698)
1 /*	$OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $	*/
2 
3 /*
4  * FILE:	sha2.c
5  * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
6  *
7  * Copyright (c) 2000-2001, Aaron D. Gifford
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the copyright holder nor the names of contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35  */
36 
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
38 
39 #include "includes.h"
40 
41 #if !defined(HAVE_SHA256UPDATE) || !defined(HAVE_SHA384UPDATE) || \
42     !defined(HAVE_SHA512UPDATE)
43 
44 #define MAKE_CLONE(x, y)	/* no-op out */
45 
46 #include <string.h>
47 #include <sha2.h>
48 
49 /*
50  * UNROLLED TRANSFORM LOOP NOTE:
51  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
52  * loop version for the hash transform rounds (defined using macros
53  * later in this file).  Either define on the command line, for example:
54  *
55  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
56  *
57  * or define below:
58  *
59  *   #define SHA2_UNROLL_TRANSFORM
60  *
61  */
62 #ifndef SHA2_SMALL
63 #if defined(__amd64__) || defined(__i386__)
64 #define SHA2_UNROLL_TRANSFORM
65 #endif
66 #endif
67 
68 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
69 /*
70  * BYTE_ORDER NOTE:
71  *
72  * Please make sure that your system defines BYTE_ORDER.  If your
73  * architecture is little-endian, make sure it also defines
74  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
75  * equivalent.
76  *
77  * If your system does not define the above, then you can do so by
78  * hand like this:
79  *
80  *   #define LITTLE_ENDIAN 1234
81  *   #define BIG_ENDIAN    4321
82  *
83  * And for little-endian machines, add:
84  *
85  *   #define BYTE_ORDER LITTLE_ENDIAN
86  *
87  * Or for big-endian machines:
88  *
89  *   #define BYTE_ORDER BIG_ENDIAN
90  *
91  * The FreeBSD machine this was written on defines BYTE_ORDER
92  * appropriately by including <sys/types.h> (which in turn includes
93  * <machine/endian.h> where the appropriate definitions are actually
94  * made).
95  */
96 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
97 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
98 #endif
99 
100 
101 /*** SHA-224/256/384/512 Various Length Definitions ***********************/
102 /* NOTE: Most of these are in sha2.h */
103 #define SHA224_SHORT_BLOCK_LENGTH	(SHA224_BLOCK_LENGTH - 8)
104 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
105 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
106 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
107 
108 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
109 #define BE_8_TO_32(dst, cp) do {					\
110 	(dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |	\
111 	    ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);	\
112 } while(0)
113 
114 #define BE_8_TO_64(dst, cp) do {					\
115 	(dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |	\
116 	    ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |	\
117 	    ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |	\
118 	    ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);	\
119 } while (0)
120 
121 #define BE_64_TO_8(cp, src) do {					\
122 	(cp)[0] = (src) >> 56;						\
123         (cp)[1] = (src) >> 48;						\
124 	(cp)[2] = (src) >> 40;						\
125 	(cp)[3] = (src) >> 32;						\
126 	(cp)[4] = (src) >> 24;						\
127 	(cp)[5] = (src) >> 16;						\
128 	(cp)[6] = (src) >> 8;						\
129 	(cp)[7] = (src);						\
130 } while (0)
131 
132 #define BE_32_TO_8(cp, src) do {					\
133 	(cp)[0] = (src) >> 24;						\
134 	(cp)[1] = (src) >> 16;						\
135 	(cp)[2] = (src) >> 8;						\
136 	(cp)[3] = (src);						\
137 } while (0)
138 
139 /*
140  * Macro for incrementally adding the unsigned 64-bit integer n to the
141  * unsigned 128-bit integer (represented using a two-element array of
142  * 64-bit words):
143  */
144 #define ADDINC128(w,n) do {						\
145 	(w)[0] += (u_int64_t)(n);					\
146 	if ((w)[0] < (n)) {						\
147 		(w)[1]++;						\
148 	}								\
149 } while (0)
150 
151 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
152 /*
153  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
154  *
155  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
156  *   S is a ROTATION) because the SHA-224/256/384/512 description document
157  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
158  *   same "backwards" definition.
159  */
160 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
161 #define R(b,x) 		((x) >> (b))
162 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
163 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
164 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
165 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
166 
167 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
168 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
169 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
170 
171 /* Four of six logical functions used in SHA-224 and SHA-256: */
172 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
173 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
174 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
175 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
176 
177 /* Four of six logical functions used in SHA-384 and SHA-512: */
178 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
179 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
180 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
181 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
182 
183 
184 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
185 /* Hash constant words K for SHA-224 and SHA-256: */
186 static const u_int32_t K256[64] = {
187 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
188 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
189 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
190 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
191 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
192 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
193 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
194 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
195 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
196 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
197 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
198 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
199 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
200 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
201 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
202 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
203 };
204 
205 /* Initial hash value H for SHA-256: */
206 static const u_int32_t sha256_initial_hash_value[8] = {
207 	0x6a09e667UL,
208 	0xbb67ae85UL,
209 	0x3c6ef372UL,
210 	0xa54ff53aUL,
211 	0x510e527fUL,
212 	0x9b05688cUL,
213 	0x1f83d9abUL,
214 	0x5be0cd19UL
215 };
216 
217 /* Hash constant words K for SHA-384 and SHA-512: */
218 static const u_int64_t K512[80] = {
219 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
220 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
221 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
222 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
223 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
224 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
225 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
226 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
227 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
228 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
229 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
230 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
231 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
232 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
233 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
234 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
235 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
236 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
237 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
238 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
239 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
240 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
241 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
242 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
243 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
244 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
245 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
246 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
247 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
248 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
249 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
250 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
251 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
252 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
253 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
254 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
255 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
256 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
257 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
258 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
259 };
260 
261 /* Initial hash value H for SHA-512 */
262 static const u_int64_t sha512_initial_hash_value[8] = {
263 	0x6a09e667f3bcc908ULL,
264 	0xbb67ae8584caa73bULL,
265 	0x3c6ef372fe94f82bULL,
266 	0xa54ff53a5f1d36f1ULL,
267 	0x510e527fade682d1ULL,
268 	0x9b05688c2b3e6c1fULL,
269 	0x1f83d9abfb41bd6bULL,
270 	0x5be0cd19137e2179ULL
271 };
272 
273 #if !defined(SHA2_SMALL)
274 #if 0
275 /* Initial hash value H for SHA-224: */
276 static const u_int32_t sha224_initial_hash_value[8] = {
277 	0xc1059ed8UL,
278 	0x367cd507UL,
279 	0x3070dd17UL,
280 	0xf70e5939UL,
281 	0xffc00b31UL,
282 	0x68581511UL,
283 	0x64f98fa7UL,
284 	0xbefa4fa4UL
285 };
286 #endif /* 0 */
287 
288 /* Initial hash value H for SHA-384 */
289 static const u_int64_t sha384_initial_hash_value[8] = {
290 	0xcbbb9d5dc1059ed8ULL,
291 	0x629a292a367cd507ULL,
292 	0x9159015a3070dd17ULL,
293 	0x152fecd8f70e5939ULL,
294 	0x67332667ffc00b31ULL,
295 	0x8eb44a8768581511ULL,
296 	0xdb0c2e0d64f98fa7ULL,
297 	0x47b5481dbefa4fa4ULL
298 };
299 
300 #if 0
301 /* Initial hash value H for SHA-512-256 */
302 static const u_int64_t sha512_256_initial_hash_value[8] = {
303 	0x22312194fc2bf72cULL,
304 	0x9f555fa3c84c64c2ULL,
305 	0x2393b86b6f53b151ULL,
306 	0x963877195940eabdULL,
307 	0x96283ee2a88effe3ULL,
308 	0xbe5e1e2553863992ULL,
309 	0x2b0199fc2c85b8aaULL,
310 	0x0eb72ddc81c52ca2ULL
311 };
312 
313 /*** SHA-224: *********************************************************/
314 void
315 SHA224Init(SHA2_CTX *context)
316 {
317 	memcpy(context->state.st32, sha224_initial_hash_value,
318 	    sizeof(sha224_initial_hash_value));
319 	memset(context->buffer, 0, sizeof(context->buffer));
320 	context->bitcount[0] = 0;
321 }
322 DEF_WEAK(SHA224Init);
323 
324 MAKE_CLONE(SHA224Transform, SHA256Transform);
325 MAKE_CLONE(SHA224Update, SHA256Update);
326 MAKE_CLONE(SHA224Pad, SHA256Pad);
327 DEF_WEAK(SHA224Transform);
328 DEF_WEAK(SHA224Update);
329 DEF_WEAK(SHA224Pad);
330 
331 void
332 SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context)
333 {
334 	SHA224Pad(context);
335 
336 #if BYTE_ORDER == LITTLE_ENDIAN
337 	int	i;
338 
339 	/* Convert TO host byte order */
340 	for (i = 0; i < 7; i++)
341 		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
342 #else
343 	memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH);
344 #endif
345 	explicit_bzero(context, sizeof(*context));
346 }
347 DEF_WEAK(SHA224Final);
348 #endif /* !defined(SHA2_SMALL) */
349 #endif /* 0 */
350 
351 /*** SHA-256: *********************************************************/
352 void
353 SHA256Init(SHA2_CTX *context)
354 {
355 	memcpy(context->state.st32, sha256_initial_hash_value,
356 	    sizeof(sha256_initial_hash_value));
357 	memset(context->buffer, 0, sizeof(context->buffer));
358 	context->bitcount[0] = 0;
359 }
360 DEF_WEAK(SHA256Init);
361 
362 #ifdef SHA2_UNROLL_TRANSFORM
363 
364 /* Unrolled SHA-256 round macros: */
365 
366 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
367 	BE_8_TO_32(W256[j], data);					    \
368 	data += 4;							    \
369 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
370 	(d) += T1;							    \
371 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
372 	j++;								    \
373 } while(0)
374 
375 #define ROUND256(a,b,c,d,e,f,g,h) do {					    \
376 	s0 = W256[(j+1)&0x0f];						    \
377 	s0 = sigma0_256(s0);						    \
378 	s1 = W256[(j+14)&0x0f];						    \
379 	s1 = sigma1_256(s1);						    \
380 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \
381 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \
382 	(d) += T1;							    \
383 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
384 	j++;								    \
385 } while(0)
386 
387 void
388 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
389 {
390 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
391 	u_int32_t	T1, W256[16];
392 	int		j;
393 
394 	/* Initialize registers with the prev. intermediate value */
395 	a = state[0];
396 	b = state[1];
397 	c = state[2];
398 	d = state[3];
399 	e = state[4];
400 	f = state[5];
401 	g = state[6];
402 	h = state[7];
403 
404 	j = 0;
405 	do {
406 		/* Rounds 0 to 15 (unrolled): */
407 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
408 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
409 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
410 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
411 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
412 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
413 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
414 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
415 	} while (j < 16);
416 
417 	/* Now for the remaining rounds up to 63: */
418 	do {
419 		ROUND256(a,b,c,d,e,f,g,h);
420 		ROUND256(h,a,b,c,d,e,f,g);
421 		ROUND256(g,h,a,b,c,d,e,f);
422 		ROUND256(f,g,h,a,b,c,d,e);
423 		ROUND256(e,f,g,h,a,b,c,d);
424 		ROUND256(d,e,f,g,h,a,b,c);
425 		ROUND256(c,d,e,f,g,h,a,b);
426 		ROUND256(b,c,d,e,f,g,h,a);
427 	} while (j < 64);
428 
429 	/* Compute the current intermediate hash value */
430 	state[0] += a;
431 	state[1] += b;
432 	state[2] += c;
433 	state[3] += d;
434 	state[4] += e;
435 	state[5] += f;
436 	state[6] += g;
437 	state[7] += h;
438 
439 	/* Clean up */
440 	a = b = c = d = e = f = g = h = T1 = 0;
441 }
442 
443 #else /* SHA2_UNROLL_TRANSFORM */
444 
445 void
446 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
447 {
448 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
449 	u_int32_t	T1, T2, W256[16];
450 	int		j;
451 
452 	/* Initialize registers with the prev. intermediate value */
453 	a = state[0];
454 	b = state[1];
455 	c = state[2];
456 	d = state[3];
457 	e = state[4];
458 	f = state[5];
459 	g = state[6];
460 	h = state[7];
461 
462 	j = 0;
463 	do {
464 		BE_8_TO_32(W256[j], data);
465 		data += 4;
466 		/* Apply the SHA-256 compression function to update a..h */
467 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
468 		T2 = Sigma0_256(a) + Maj(a, b, c);
469 		h = g;
470 		g = f;
471 		f = e;
472 		e = d + T1;
473 		d = c;
474 		c = b;
475 		b = a;
476 		a = T1 + T2;
477 
478 		j++;
479 	} while (j < 16);
480 
481 	do {
482 		/* Part of the message block expansion: */
483 		s0 = W256[(j+1)&0x0f];
484 		s0 = sigma0_256(s0);
485 		s1 = W256[(j+14)&0x0f];
486 		s1 = sigma1_256(s1);
487 
488 		/* Apply the SHA-256 compression function to update a..h */
489 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
490 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
491 		T2 = Sigma0_256(a) + Maj(a, b, c);
492 		h = g;
493 		g = f;
494 		f = e;
495 		e = d + T1;
496 		d = c;
497 		c = b;
498 		b = a;
499 		a = T1 + T2;
500 
501 		j++;
502 	} while (j < 64);
503 
504 	/* Compute the current intermediate hash value */
505 	state[0] += a;
506 	state[1] += b;
507 	state[2] += c;
508 	state[3] += d;
509 	state[4] += e;
510 	state[5] += f;
511 	state[6] += g;
512 	state[7] += h;
513 
514 	/* Clean up */
515 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
516 }
517 
518 #endif /* SHA2_UNROLL_TRANSFORM */
519 DEF_WEAK(SHA256Transform);
520 
521 void
522 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
523 {
524 	u_int64_t	freespace, usedspace;
525 
526 	/* Calling with no data is valid (we do nothing) */
527 	if (len == 0)
528 		return;
529 
530 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
531 	if (usedspace > 0) {
532 		/* Calculate how much free space is available in the buffer */
533 		freespace = SHA256_BLOCK_LENGTH - usedspace;
534 
535 		if (len >= freespace) {
536 			/* Fill the buffer completely and process it */
537 			memcpy(&context->buffer[usedspace], data, freespace);
538 			context->bitcount[0] += freespace << 3;
539 			len -= freespace;
540 			data += freespace;
541 			SHA256Transform(context->state.st32, context->buffer);
542 		} else {
543 			/* The buffer is not yet full */
544 			memcpy(&context->buffer[usedspace], data, len);
545 			context->bitcount[0] += (u_int64_t)len << 3;
546 			/* Clean up: */
547 			usedspace = freespace = 0;
548 			return;
549 		}
550 	}
551 	while (len >= SHA256_BLOCK_LENGTH) {
552 		/* Process as many complete blocks as we can */
553 		SHA256Transform(context->state.st32, data);
554 		context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
555 		len -= SHA256_BLOCK_LENGTH;
556 		data += SHA256_BLOCK_LENGTH;
557 	}
558 	if (len > 0) {
559 		/* There's left-overs, so save 'em */
560 		memcpy(context->buffer, data, len);
561 		context->bitcount[0] += len << 3;
562 	}
563 	/* Clean up: */
564 	usedspace = freespace = 0;
565 }
566 DEF_WEAK(SHA256Update);
567 
568 void
569 SHA256Pad(SHA2_CTX *context)
570 {
571 	unsigned int	usedspace;
572 
573 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
574 	if (usedspace > 0) {
575 		/* Begin padding with a 1 bit: */
576 		context->buffer[usedspace++] = 0x80;
577 
578 		if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
579 			/* Set-up for the last transform: */
580 			memset(&context->buffer[usedspace], 0,
581 			    SHA256_SHORT_BLOCK_LENGTH - usedspace);
582 		} else {
583 			if (usedspace < SHA256_BLOCK_LENGTH) {
584 				memset(&context->buffer[usedspace], 0,
585 				    SHA256_BLOCK_LENGTH - usedspace);
586 			}
587 			/* Do second-to-last transform: */
588 			SHA256Transform(context->state.st32, context->buffer);
589 
590 			/* Prepare for last transform: */
591 			memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
592 		}
593 	} else {
594 		/* Set-up for the last transform: */
595 		memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
596 
597 		/* Begin padding with a 1 bit: */
598 		*context->buffer = 0x80;
599 	}
600 	/* Store the length of input data (in bits) in big endian format: */
601 	BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
602 	    context->bitcount[0]);
603 
604 	/* Final transform: */
605 	SHA256Transform(context->state.st32, context->buffer);
606 
607 	/* Clean up: */
608 	usedspace = 0;
609 }
610 DEF_WEAK(SHA256Pad);
611 
612 void
613 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
614 {
615 	SHA256Pad(context);
616 
617 #if BYTE_ORDER == LITTLE_ENDIAN
618 	int	i;
619 
620 	/* Convert TO host byte order */
621 	for (i = 0; i < 8; i++)
622 		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
623 #else
624 	memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
625 #endif
626 	explicit_bzero(context, sizeof(*context));
627 }
628 DEF_WEAK(SHA256Final);
629 
630 
631 /*** SHA-512: *********************************************************/
632 void
633 SHA512Init(SHA2_CTX *context)
634 {
635 	memcpy(context->state.st64, sha512_initial_hash_value,
636 	    sizeof(sha512_initial_hash_value));
637 	memset(context->buffer, 0, sizeof(context->buffer));
638 	context->bitcount[0] = context->bitcount[1] =  0;
639 }
640 DEF_WEAK(SHA512Init);
641 
642 #ifdef SHA2_UNROLL_TRANSFORM
643 
644 /* Unrolled SHA-512 round macros: */
645 
646 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
647 	BE_8_TO_64(W512[j], data);					    \
648 	data += 8;							    \
649 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
650 	(d) += T1;							    \
651 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
652 	j++;								    \
653 } while(0)
654 
655 
656 #define ROUND512(a,b,c,d,e,f,g,h) do {					    \
657 	s0 = W512[(j+1)&0x0f];						    \
658 	s0 = sigma0_512(s0);						    \
659 	s1 = W512[(j+14)&0x0f];						    \
660 	s1 = sigma1_512(s1);						    \
661 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \
662              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \
663 	(d) += T1;							    \
664 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
665 	j++;								    \
666 } while(0)
667 
668 void
669 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
670 {
671 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
672 	u_int64_t	T1, W512[16];
673 	int		j;
674 
675 	/* Initialize registers with the prev. intermediate value */
676 	a = state[0];
677 	b = state[1];
678 	c = state[2];
679 	d = state[3];
680 	e = state[4];
681 	f = state[5];
682 	g = state[6];
683 	h = state[7];
684 
685 	j = 0;
686 	do {
687 		/* Rounds 0 to 15 (unrolled): */
688 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
689 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
690 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
691 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
692 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
693 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
694 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
695 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
696 	} while (j < 16);
697 
698 	/* Now for the remaining rounds up to 79: */
699 	do {
700 		ROUND512(a,b,c,d,e,f,g,h);
701 		ROUND512(h,a,b,c,d,e,f,g);
702 		ROUND512(g,h,a,b,c,d,e,f);
703 		ROUND512(f,g,h,a,b,c,d,e);
704 		ROUND512(e,f,g,h,a,b,c,d);
705 		ROUND512(d,e,f,g,h,a,b,c);
706 		ROUND512(c,d,e,f,g,h,a,b);
707 		ROUND512(b,c,d,e,f,g,h,a);
708 	} while (j < 80);
709 
710 	/* Compute the current intermediate hash value */
711 	state[0] += a;
712 	state[1] += b;
713 	state[2] += c;
714 	state[3] += d;
715 	state[4] += e;
716 	state[5] += f;
717 	state[6] += g;
718 	state[7] += h;
719 
720 	/* Clean up */
721 	a = b = c = d = e = f = g = h = T1 = 0;
722 }
723 
724 #else /* SHA2_UNROLL_TRANSFORM */
725 
726 void
727 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
728 {
729 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
730 	u_int64_t	T1, T2, W512[16];
731 	int		j;
732 
733 	/* Initialize registers with the prev. intermediate value */
734 	a = state[0];
735 	b = state[1];
736 	c = state[2];
737 	d = state[3];
738 	e = state[4];
739 	f = state[5];
740 	g = state[6];
741 	h = state[7];
742 
743 	j = 0;
744 	do {
745 		BE_8_TO_64(W512[j], data);
746 		data += 8;
747 		/* Apply the SHA-512 compression function to update a..h */
748 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
749 		T2 = Sigma0_512(a) + Maj(a, b, c);
750 		h = g;
751 		g = f;
752 		f = e;
753 		e = d + T1;
754 		d = c;
755 		c = b;
756 		b = a;
757 		a = T1 + T2;
758 
759 		j++;
760 	} while (j < 16);
761 
762 	do {
763 		/* Part of the message block expansion: */
764 		s0 = W512[(j+1)&0x0f];
765 		s0 = sigma0_512(s0);
766 		s1 = W512[(j+14)&0x0f];
767 		s1 =  sigma1_512(s1);
768 
769 		/* Apply the SHA-512 compression function to update a..h */
770 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
771 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
772 		T2 = Sigma0_512(a) + Maj(a, b, c);
773 		h = g;
774 		g = f;
775 		f = e;
776 		e = d + T1;
777 		d = c;
778 		c = b;
779 		b = a;
780 		a = T1 + T2;
781 
782 		j++;
783 	} while (j < 80);
784 
785 	/* Compute the current intermediate hash value */
786 	state[0] += a;
787 	state[1] += b;
788 	state[2] += c;
789 	state[3] += d;
790 	state[4] += e;
791 	state[5] += f;
792 	state[6] += g;
793 	state[7] += h;
794 
795 	/* Clean up */
796 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
797 }
798 
799 #endif /* SHA2_UNROLL_TRANSFORM */
800 DEF_WEAK(SHA512Transform);
801 
802 void
803 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
804 {
805 	size_t	freespace, usedspace;
806 
807 	/* Calling with no data is valid (we do nothing) */
808 	if (len == 0)
809 		return;
810 
811 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
812 	if (usedspace > 0) {
813 		/* Calculate how much free space is available in the buffer */
814 		freespace = SHA512_BLOCK_LENGTH - usedspace;
815 
816 		if (len >= freespace) {
817 			/* Fill the buffer completely and process it */
818 			memcpy(&context->buffer[usedspace], data, freespace);
819 			ADDINC128(context->bitcount, freespace << 3);
820 			len -= freespace;
821 			data += freespace;
822 			SHA512Transform(context->state.st64, context->buffer);
823 		} else {
824 			/* The buffer is not yet full */
825 			memcpy(&context->buffer[usedspace], data, len);
826 			ADDINC128(context->bitcount, len << 3);
827 			/* Clean up: */
828 			usedspace = freespace = 0;
829 			return;
830 		}
831 	}
832 	while (len >= SHA512_BLOCK_LENGTH) {
833 		/* Process as many complete blocks as we can */
834 		SHA512Transform(context->state.st64, data);
835 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
836 		len -= SHA512_BLOCK_LENGTH;
837 		data += SHA512_BLOCK_LENGTH;
838 	}
839 	if (len > 0) {
840 		/* There's left-overs, so save 'em */
841 		memcpy(context->buffer, data, len);
842 		ADDINC128(context->bitcount, len << 3);
843 	}
844 	/* Clean up: */
845 	usedspace = freespace = 0;
846 }
847 DEF_WEAK(SHA512Update);
848 
849 void
850 SHA512Pad(SHA2_CTX *context)
851 {
852 	unsigned int	usedspace;
853 
854 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
855 	if (usedspace > 0) {
856 		/* Begin padding with a 1 bit: */
857 		context->buffer[usedspace++] = 0x80;
858 
859 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
860 			/* Set-up for the last transform: */
861 			memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
862 		} else {
863 			if (usedspace < SHA512_BLOCK_LENGTH) {
864 				memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
865 			}
866 			/* Do second-to-last transform: */
867 			SHA512Transform(context->state.st64, context->buffer);
868 
869 			/* And set-up for the last transform: */
870 			memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
871 		}
872 	} else {
873 		/* Prepare for final transform: */
874 		memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
875 
876 		/* Begin padding with a 1 bit: */
877 		*context->buffer = 0x80;
878 	}
879 	/* Store the length of input data (in bits) in big endian format: */
880 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
881 	    context->bitcount[1]);
882 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
883 	    context->bitcount[0]);
884 
885 	/* Final transform: */
886 	SHA512Transform(context->state.st64, context->buffer);
887 
888 	/* Clean up: */
889 	usedspace = 0;
890 }
891 DEF_WEAK(SHA512Pad);
892 
893 void
894 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
895 {
896 	SHA512Pad(context);
897 
898 #if BYTE_ORDER == LITTLE_ENDIAN
899 	int	i;
900 
901 	/* Convert TO host byte order */
902 	for (i = 0; i < 8; i++)
903 		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
904 #else
905 	memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
906 #endif
907 	explicit_bzero(context, sizeof(*context));
908 }
909 DEF_WEAK(SHA512Final);
910 
911 #if !defined(SHA2_SMALL)
912 
913 /*** SHA-384: *********************************************************/
914 void
915 SHA384Init(SHA2_CTX *context)
916 {
917 	memcpy(context->state.st64, sha384_initial_hash_value,
918 	    sizeof(sha384_initial_hash_value));
919 	memset(context->buffer, 0, sizeof(context->buffer));
920 	context->bitcount[0] = context->bitcount[1] = 0;
921 }
922 DEF_WEAK(SHA384Init);
923 
924 MAKE_CLONE(SHA384Transform, SHA512Transform);
925 MAKE_CLONE(SHA384Update, SHA512Update);
926 MAKE_CLONE(SHA384Pad, SHA512Pad);
927 DEF_WEAK(SHA384Transform);
928 DEF_WEAK(SHA384Update);
929 DEF_WEAK(SHA384Pad);
930 
931 /* Equivalent of MAKE_CLONE (which is a no-op) for SHA384 funcs */
932 void
933 SHA384Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
934 {
935 	SHA512Transform(state, data);
936 }
937 
938 void
939 SHA384Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
940 {
941 	SHA512Update(context, data, len);
942 }
943 
944 void
945 SHA384Pad(SHA2_CTX *context)
946 {
947 	SHA512Pad(context);
948 }
949 
950 void
951 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
952 {
953 	SHA384Pad(context);
954 
955 #if BYTE_ORDER == LITTLE_ENDIAN
956 	int	i;
957 
958 	/* Convert TO host byte order */
959 	for (i = 0; i < 6; i++)
960 		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
961 #else
962 	memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
963 #endif
964 	/* Zero out state data */
965 	explicit_bzero(context, sizeof(*context));
966 }
967 DEF_WEAK(SHA384Final);
968 
969 #if 0
970 /*** SHA-512/256: *********************************************************/
971 void
972 SHA512_256Init(SHA2_CTX *context)
973 {
974 	memcpy(context->state.st64, sha512_256_initial_hash_value,
975 	    sizeof(sha512_256_initial_hash_value));
976 	memset(context->buffer, 0, sizeof(context->buffer));
977 	context->bitcount[0] = context->bitcount[1] = 0;
978 }
979 DEF_WEAK(SHA512_256Init);
980 
981 MAKE_CLONE(SHA512_256Transform, SHA512Transform);
982 MAKE_CLONE(SHA512_256Update, SHA512Update);
983 MAKE_CLONE(SHA512_256Pad, SHA512Pad);
984 DEF_WEAK(SHA512_256Transform);
985 DEF_WEAK(SHA512_256Update);
986 DEF_WEAK(SHA512_256Pad);
987 
988 void
989 SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context)
990 {
991 	SHA512_256Pad(context);
992 
993 #if BYTE_ORDER == LITTLE_ENDIAN
994 	int	i;
995 
996 	/* Convert TO host byte order */
997 	for (i = 0; i < 4; i++)
998 		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
999 #else
1000 	memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH);
1001 #endif
1002 	/* Zero out state data */
1003 	explicit_bzero(context, sizeof(*context));
1004 }
1005 DEF_WEAK(SHA512_256Final);
1006 #endif /* !defined(SHA2_SMALL) */
1007 #endif /* 0 */
1008 
1009 #endif /* HAVE_SHA{256,384,512}UPDATE */
1010