xref: /illumos-kvm-cmd/qemu-doc.texi (revision 68396ea9)
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename qemu-doc.info
4
5@documentlanguage en
6@documentencoding UTF-8
7
8@settitle QEMU Emulator User Documentation
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
12
13@ifinfo
14@direntry
15* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
19@iftex
20@titlepage
21@sp 7
22@center @titlefont{QEMU Emulator}
23@sp 1
24@center @titlefont{User Documentation}
25@sp 3
26@end titlepage
27@end iftex
28
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
38* QEMU User space emulator::
39* compilation:: Compilation from the sources
40* License::
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
48@chapter Introduction
49
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
55@section Features
56
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
59
60QEMU has two operating modes:
61
62@itemize
63@cindex operating modes
64
65@item
66@cindex system emulation
67Full system emulation. In this mode, QEMU emulates a full system (for
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
71
72@item
73@cindex user mode emulation
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
78
79@end itemize
80
81QEMU can run without an host kernel driver and yet gives acceptable
82performance.
83
84For system emulation, the following hardware targets are supported:
85@itemize
86@cindex emulated target systems
87@cindex supported target systems
88@item PC (x86 or x86_64 processor)
89@item ISA PC (old style PC without PCI bus)
90@item PREP (PowerPC processor)
91@item G3 Beige PowerMac (PowerPC processor)
92@item Mac99 PowerMac (PowerPC processor, in progress)
93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95@item Malta board (32-bit and 64-bit MIPS processors)
96@item MIPS Magnum (64-bit MIPS processor)
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
99@item ARM RealView Emulation/Platform baseboard (ARM)
100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103@item Freescale MCF5208EVB (ColdFire V2).
104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105@item Palm Tungsten|E PDA (OMAP310 processor)
106@item N800 and N810 tablets (OMAP2420 processor)
107@item MusicPal (MV88W8618 ARM processor)
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
110@item Syborg SVP base model (ARM Cortex-A8).
111@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113@end itemize
114
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119
120@node Installation
121@chapter Installation
122
123If you want to compile QEMU yourself, see @ref{compilation}.
124
125@menu
126* install_linux::   Linux
127* install_windows:: Windows
128* install_mac::     Macintosh
129@end menu
130
131@node install_linux
132@section Linux
133@cindex installation (Linux)
134
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
137
138@node install_windows
139@section Windows
140@cindex installation (Windows)
141
142Download the experimental binary installer at
143@url{http://www.free.oszoo.org/@/download.html}.
144TODO (no longer available)
145
146@node install_mac
147@section Mac OS X
148
149Download the experimental binary installer at
150@url{http://www.free.oszoo.org/@/download.html}.
151TODO (no longer available)
152
153@node QEMU PC System emulator
154@chapter QEMU PC System emulator
155@cindex system emulation (PC)
156
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart::   Quick Start
160* sec_invocation::     Invocation
161* pcsys_keys::         Keys
162* pcsys_monitor::      QEMU Monitor
163* disk_images::        Disk Images
164* pcsys_network::      Network emulation
165* pcsys_other_devs::   Other Devices
166* direct_linux_boot::  Direct Linux Boot
167* pcsys_usb::          USB emulation
168* vnc_security::       VNC security
169* gdb_usage::          GDB usage
170* pcsys_os_specific::  Target OS specific information
171@end menu
172
173@node pcsys_introduction
174@section Introduction
175
176@c man begin DESCRIPTION
177
178The QEMU PC System emulator simulates the
179following peripherals:
180
181@itemize @minus
182@item
183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184@item
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
187@item
188PS/2 mouse and keyboard
189@item
1902 PCI IDE interfaces with hard disk and CD-ROM support
191@item
192Floppy disk
193@item
194PCI and ISA network adapters
195@item
196Serial ports
197@item
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
202Intel 82801AA AC97 Audio compatible sound card
203@item
204Intel HD Audio Controller and HDA codec
205@item
206Adlib (OPL2) - Yamaha YM3812 compatible chip
207@item
208Gravis Ultrasound GF1 sound card
209@item
210CS4231A compatible sound card
211@item
212PCI UHCI USB controller and a virtual USB hub.
213@end itemize
214
215SMP is supported with up to 255 CPUs.
216
217Note that adlib, gus and cs4231a are only available when QEMU was
218configured with --audio-card-list option containing the name(s) of
219required card(s).
220
221QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222VGA BIOS.
223
224QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
226QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227by Tibor "TS" Schütz.
228
229Not that, by default, GUS shares IRQ(7) with parallel ports and so
230qemu must be told to not have parallel ports to have working GUS
231
232@example
233qemu dos.img -soundhw gus -parallel none
234@end example
235
236Alternatively:
237@example
238qemu dos.img -device gus,irq=5
239@end example
240
241Or some other unclaimed IRQ.
242
243CS4231A is the chip used in Windows Sound System and GUSMAX products
244
245@c man end
246
247@node pcsys_quickstart
248@section Quick Start
249@cindex quick start
250
251Download and uncompress the linux image (@file{linux.img}) and type:
252
253@example
254qemu linux.img
255@end example
256
257Linux should boot and give you a prompt.
258
259@node sec_invocation
260@section Invocation
261
262@example
263@c man begin SYNOPSIS
264usage: qemu [options] [@var{disk_image}]
265@c man end
266@end example
267
268@c man begin OPTIONS
269@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270targets do not need a disk image.
271
272@include qemu-options.texi
273
274@c man end
275
276@node pcsys_keys
277@section Keys
278
279@c man begin OPTIONS
280
281During the graphical emulation, you can use the following keys:
282@table @key
283@item Ctrl-Alt-f
284@kindex Ctrl-Alt-f
285Toggle full screen
286
287@item Ctrl-Alt-u
288@kindex Ctrl-Alt-u
289Restore the screen's un-scaled dimensions
290
291@item Ctrl-Alt-n
292@kindex Ctrl-Alt-n
293Switch to virtual console 'n'. Standard console mappings are:
294@table @emph
295@item 1
296Target system display
297@item 2
298Monitor
299@item 3
300Serial port
301@end table
302
303@item Ctrl-Alt
304@kindex Ctrl-Alt
305Toggle mouse and keyboard grab.
306@end table
307
308@kindex Ctrl-Up
309@kindex Ctrl-Down
310@kindex Ctrl-PageUp
311@kindex Ctrl-PageDown
312In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
313@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
314
315@kindex Ctrl-a h
316During emulation, if you are using the @option{-nographic} option, use
317@key{Ctrl-a h} to get terminal commands:
318
319@table @key
320@item Ctrl-a h
321@kindex Ctrl-a h
322@item Ctrl-a ?
323@kindex Ctrl-a ?
324Print this help
325@item Ctrl-a x
326@kindex Ctrl-a x
327Exit emulator
328@item Ctrl-a s
329@kindex Ctrl-a s
330Save disk data back to file (if -snapshot)
331@item Ctrl-a t
332@kindex Ctrl-a t
333Toggle console timestamps
334@item Ctrl-a b
335@kindex Ctrl-a b
336Send break (magic sysrq in Linux)
337@item Ctrl-a c
338@kindex Ctrl-a c
339Switch between console and monitor
340@item Ctrl-a Ctrl-a
341@kindex Ctrl-a a
342Send Ctrl-a
343@end table
344@c man end
345
346@ignore
347
348@c man begin SEEALSO
349The HTML documentation of QEMU for more precise information and Linux
350user mode emulator invocation.
351@c man end
352
353@c man begin AUTHOR
354Fabrice Bellard
355@c man end
356
357@end ignore
358
359@node pcsys_monitor
360@section QEMU Monitor
361@cindex QEMU monitor
362
363The QEMU monitor is used to give complex commands to the QEMU
364emulator. You can use it to:
365
366@itemize @minus
367
368@item
369Remove or insert removable media images
370(such as CD-ROM or floppies).
371
372@item
373Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
374from a disk file.
375
376@item Inspect the VM state without an external debugger.
377
378@end itemize
379
380@subsection Commands
381
382The following commands are available:
383
384@include qemu-monitor.texi
385
386@subsection Integer expressions
387
388The monitor understands integers expressions for every integer
389argument. You can use register names to get the value of specifics
390CPU registers by prefixing them with @emph{$}.
391
392@node disk_images
393@section Disk Images
394
395Since version 0.6.1, QEMU supports many disk image formats, including
396growable disk images (their size increase as non empty sectors are
397written), compressed and encrypted disk images. Version 0.8.3 added
398the new qcow2 disk image format which is essential to support VM
399snapshots.
400
401@menu
402* disk_images_quickstart::    Quick start for disk image creation
403* disk_images_snapshot_mode:: Snapshot mode
404* vm_snapshots::              VM snapshots
405* qemu_img_invocation::       qemu-img Invocation
406* qemu_nbd_invocation::       qemu-nbd Invocation
407* host_drives::               Using host drives
408* disk_images_fat_images::    Virtual FAT disk images
409* disk_images_nbd::           NBD access
410* disk_images_sheepdog::      Sheepdog disk images
411@end menu
412
413@node disk_images_quickstart
414@subsection Quick start for disk image creation
415
416You can create a disk image with the command:
417@example
418qemu-img create myimage.img mysize
419@end example
420where @var{myimage.img} is the disk image filename and @var{mysize} is its
421size in kilobytes. You can add an @code{M} suffix to give the size in
422megabytes and a @code{G} suffix for gigabytes.
423
424See @ref{qemu_img_invocation} for more information.
425
426@node disk_images_snapshot_mode
427@subsection Snapshot mode
428
429If you use the option @option{-snapshot}, all disk images are
430considered as read only. When sectors in written, they are written in
431a temporary file created in @file{/tmp}. You can however force the
432write back to the raw disk images by using the @code{commit} monitor
433command (or @key{C-a s} in the serial console).
434
435@node vm_snapshots
436@subsection VM snapshots
437
438VM snapshots are snapshots of the complete virtual machine including
439CPU state, RAM, device state and the content of all the writable
440disks. In order to use VM snapshots, you must have at least one non
441removable and writable block device using the @code{qcow2} disk image
442format. Normally this device is the first virtual hard drive.
443
444Use the monitor command @code{savevm} to create a new VM snapshot or
445replace an existing one. A human readable name can be assigned to each
446snapshot in addition to its numerical ID.
447
448Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
449a VM snapshot. @code{info snapshots} lists the available snapshots
450with their associated information:
451
452@example
453(qemu) info snapshots
454Snapshot devices: hda
455Snapshot list (from hda):
456ID        TAG                 VM SIZE                DATE       VM CLOCK
4571         start                   41M 2006-08-06 12:38:02   00:00:14.954
4582                                 40M 2006-08-06 12:43:29   00:00:18.633
4593         msys                    40M 2006-08-06 12:44:04   00:00:23.514
460@end example
461
462A VM snapshot is made of a VM state info (its size is shown in
463@code{info snapshots}) and a snapshot of every writable disk image.
464The VM state info is stored in the first @code{qcow2} non removable
465and writable block device. The disk image snapshots are stored in
466every disk image. The size of a snapshot in a disk image is difficult
467to evaluate and is not shown by @code{info snapshots} because the
468associated disk sectors are shared among all the snapshots to save
469disk space (otherwise each snapshot would need a full copy of all the
470disk images).
471
472When using the (unrelated) @code{-snapshot} option
473(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
474but they are deleted as soon as you exit QEMU.
475
476VM snapshots currently have the following known limitations:
477@itemize
478@item
479They cannot cope with removable devices if they are removed or
480inserted after a snapshot is done.
481@item
482A few device drivers still have incomplete snapshot support so their
483state is not saved or restored properly (in particular USB).
484@end itemize
485
486@node qemu_img_invocation
487@subsection @code{qemu-img} Invocation
488
489@include qemu-img.texi
490
491@node qemu_nbd_invocation
492@subsection @code{qemu-nbd} Invocation
493
494@include qemu-nbd.texi
495
496@node host_drives
497@subsection Using host drives
498
499In addition to disk image files, QEMU can directly access host
500devices. We describe here the usage for QEMU version >= 0.8.3.
501
502@subsubsection Linux
503
504On Linux, you can directly use the host device filename instead of a
505disk image filename provided you have enough privileges to access
506it. For example, use @file{/dev/cdrom} to access to the CDROM or
507@file{/dev/fd0} for the floppy.
508
509@table @code
510@item CD
511You can specify a CDROM device even if no CDROM is loaded. QEMU has
512specific code to detect CDROM insertion or removal. CDROM ejection by
513the guest OS is supported. Currently only data CDs are supported.
514@item Floppy
515You can specify a floppy device even if no floppy is loaded. Floppy
516removal is currently not detected accurately (if you change floppy
517without doing floppy access while the floppy is not loaded, the guest
518OS will think that the same floppy is loaded).
519@item Hard disks
520Hard disks can be used. Normally you must specify the whole disk
521(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
522see it as a partitioned disk. WARNING: unless you know what you do, it
523is better to only make READ-ONLY accesses to the hard disk otherwise
524you may corrupt your host data (use the @option{-snapshot} command
525line option or modify the device permissions accordingly).
526@end table
527
528@subsubsection Windows
529
530@table @code
531@item CD
532The preferred syntax is the drive letter (e.g. @file{d:}). The
533alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
534supported as an alias to the first CDROM drive.
535
536Currently there is no specific code to handle removable media, so it
537is better to use the @code{change} or @code{eject} monitor commands to
538change or eject media.
539@item Hard disks
540Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
541where @var{N} is the drive number (0 is the first hard disk).
542
543WARNING: unless you know what you do, it is better to only make
544READ-ONLY accesses to the hard disk otherwise you may corrupt your
545host data (use the @option{-snapshot} command line so that the
546modifications are written in a temporary file).
547@end table
548
549
550@subsubsection Mac OS X
551
552@file{/dev/cdrom} is an alias to the first CDROM.
553
554Currently there is no specific code to handle removable media, so it
555is better to use the @code{change} or @code{eject} monitor commands to
556change or eject media.
557
558@node disk_images_fat_images
559@subsection Virtual FAT disk images
560
561QEMU can automatically create a virtual FAT disk image from a
562directory tree. In order to use it, just type:
563
564@example
565qemu linux.img -hdb fat:/my_directory
566@end example
567
568Then you access access to all the files in the @file{/my_directory}
569directory without having to copy them in a disk image or to export
570them via SAMBA or NFS. The default access is @emph{read-only}.
571
572Floppies can be emulated with the @code{:floppy:} option:
573
574@example
575qemu linux.img -fda fat:floppy:/my_directory
576@end example
577
578A read/write support is available for testing (beta stage) with the
579@code{:rw:} option:
580
581@example
582qemu linux.img -fda fat:floppy:rw:/my_directory
583@end example
584
585What you should @emph{never} do:
586@itemize
587@item use non-ASCII filenames ;
588@item use "-snapshot" together with ":rw:" ;
589@item expect it to work when loadvm'ing ;
590@item write to the FAT directory on the host system while accessing it with the guest system.
591@end itemize
592
593@node disk_images_nbd
594@subsection NBD access
595
596QEMU can access directly to block device exported using the Network Block Device
597protocol.
598
599@example
600qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
601@end example
602
603If the NBD server is located on the same host, you can use an unix socket instead
604of an inet socket:
605
606@example
607qemu linux.img -hdb nbd:unix:/tmp/my_socket
608@end example
609
610In this case, the block device must be exported using qemu-nbd:
611
612@example
613qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
614@end example
615
616The use of qemu-nbd allows to share a disk between several guests:
617@example
618qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
619@end example
620
621and then you can use it with two guests:
622@example
623qemu linux1.img -hdb nbd:unix:/tmp/my_socket
624qemu linux2.img -hdb nbd:unix:/tmp/my_socket
625@end example
626
627If the nbd-server uses named exports (since NBD 2.9.18), you must use the
628"exportname" option:
629@example
630qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
631qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
632@end example
633
634@node disk_images_sheepdog
635@subsection Sheepdog disk images
636
637Sheepdog is a distributed storage system for QEMU.  It provides highly
638available block level storage volumes that can be attached to
639QEMU-based virtual machines.
640
641You can create a Sheepdog disk image with the command:
642@example
643qemu-img create sheepdog:@var{image} @var{size}
644@end example
645where @var{image} is the Sheepdog image name and @var{size} is its
646size.
647
648To import the existing @var{filename} to Sheepdog, you can use a
649convert command.
650@example
651qemu-img convert @var{filename} sheepdog:@var{image}
652@end example
653
654You can boot from the Sheepdog disk image with the command:
655@example
656qemu sheepdog:@var{image}
657@end example
658
659You can also create a snapshot of the Sheepdog image like qcow2.
660@example
661qemu-img snapshot -c @var{tag} sheepdog:@var{image}
662@end example
663where @var{tag} is a tag name of the newly created snapshot.
664
665To boot from the Sheepdog snapshot, specify the tag name of the
666snapshot.
667@example
668qemu sheepdog:@var{image}:@var{tag}
669@end example
670
671You can create a cloned image from the existing snapshot.
672@example
673qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
674@end example
675where @var{base} is a image name of the source snapshot and @var{tag}
676is its tag name.
677
678If the Sheepdog daemon doesn't run on the local host, you need to
679specify one of the Sheepdog servers to connect to.
680@example
681qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
682qemu sheepdog:@var{hostname}:@var{port}:@var{image}
683@end example
684
685@node pcsys_network
686@section Network emulation
687
688QEMU can simulate several network cards (PCI or ISA cards on the PC
689target) and can connect them to an arbitrary number of Virtual Local
690Area Networks (VLANs). Host TAP devices can be connected to any QEMU
691VLAN. VLAN can be connected between separate instances of QEMU to
692simulate large networks. For simpler usage, a non privileged user mode
693network stack can replace the TAP device to have a basic network
694connection.
695
696@subsection VLANs
697
698QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
699connection between several network devices. These devices can be for
700example QEMU virtual Ethernet cards or virtual Host ethernet devices
701(TAP devices).
702
703@subsection Using TAP network interfaces
704
705This is the standard way to connect QEMU to a real network. QEMU adds
706a virtual network device on your host (called @code{tapN}), and you
707can then configure it as if it was a real ethernet card.
708
709@subsubsection Linux host
710
711As an example, you can download the @file{linux-test-xxx.tar.gz}
712archive and copy the script @file{qemu-ifup} in @file{/etc} and
713configure properly @code{sudo} so that the command @code{ifconfig}
714contained in @file{qemu-ifup} can be executed as root. You must verify
715that your host kernel supports the TAP network interfaces: the
716device @file{/dev/net/tun} must be present.
717
718See @ref{sec_invocation} to have examples of command lines using the
719TAP network interfaces.
720
721@subsubsection Windows host
722
723There is a virtual ethernet driver for Windows 2000/XP systems, called
724TAP-Win32. But it is not included in standard QEMU for Windows,
725so you will need to get it separately. It is part of OpenVPN package,
726so download OpenVPN from : @url{http://openvpn.net/}.
727
728@subsection Using the user mode network stack
729
730By using the option @option{-net user} (default configuration if no
731@option{-net} option is specified), QEMU uses a completely user mode
732network stack (you don't need root privilege to use the virtual
733network). The virtual network configuration is the following:
734
735@example
736
737         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
738                           |          (10.0.2.2)
739                           |
740                           ---->  DNS server (10.0.2.3)
741                           |
742                           ---->  SMB server (10.0.2.4)
743@end example
744
745The QEMU VM behaves as if it was behind a firewall which blocks all
746incoming connections. You can use a DHCP client to automatically
747configure the network in the QEMU VM. The DHCP server assign addresses
748to the hosts starting from 10.0.2.15.
749
750In order to check that the user mode network is working, you can ping
751the address 10.0.2.2 and verify that you got an address in the range
75210.0.2.x from the QEMU virtual DHCP server.
753
754Note that @code{ping} is not supported reliably to the internet as it
755would require root privileges. It means you can only ping the local
756router (10.0.2.2).
757
758When using the built-in TFTP server, the router is also the TFTP
759server.
760
761When using the @option{-redir} option, TCP or UDP connections can be
762redirected from the host to the guest. It allows for example to
763redirect X11, telnet or SSH connections.
764
765@subsection Connecting VLANs between QEMU instances
766
767Using the @option{-net socket} option, it is possible to make VLANs
768that span several QEMU instances. See @ref{sec_invocation} to have a
769basic example.
770
771@node pcsys_other_devs
772@section Other Devices
773
774@subsection Inter-VM Shared Memory device
775
776With KVM enabled on a Linux host, a shared memory device is available.  Guests
777map a POSIX shared memory region into the guest as a PCI device that enables
778zero-copy communication to the application level of the guests.  The basic
779syntax is:
780
781@example
782qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
783@end example
784
785If desired, interrupts can be sent between guest VMs accessing the same shared
786memory region.  Interrupt support requires using a shared memory server and
787using a chardev socket to connect to it.  The code for the shared memory server
788is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
789memory server is:
790
791@example
792qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
793                        [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
794qemu -chardev socket,path=<path>,id=<id>
795@end example
796
797When using the server, the guest will be assigned a VM ID (>=0) that allows guests
798using the same server to communicate via interrupts.  Guests can read their
799VM ID from a device register (see example code).  Since receiving the shared
800memory region from the server is asynchronous, there is a (small) chance the
801guest may boot before the shared memory is attached.  To allow an application
802to ensure shared memory is attached, the VM ID register will return -1 (an
803invalid VM ID) until the memory is attached.  Once the shared memory is
804attached, the VM ID will return the guest's valid VM ID.  With these semantics,
805the guest application can check to ensure the shared memory is attached to the
806guest before proceeding.
807
808The @option{role} argument can be set to either master or peer and will affect
809how the shared memory is migrated.  With @option{role=master}, the guest will
810copy the shared memory on migration to the destination host.  With
811@option{role=peer}, the guest will not be able to migrate with the device attached.
812With the @option{peer} case, the device should be detached and then reattached
813after migration using the PCI hotplug support.
814
815@node direct_linux_boot
816@section Direct Linux Boot
817
818This section explains how to launch a Linux kernel inside QEMU without
819having to make a full bootable image. It is very useful for fast Linux
820kernel testing.
821
822The syntax is:
823@example
824qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
825@end example
826
827Use @option{-kernel} to provide the Linux kernel image and
828@option{-append} to give the kernel command line arguments. The
829@option{-initrd} option can be used to provide an INITRD image.
830
831When using the direct Linux boot, a disk image for the first hard disk
832@file{hda} is required because its boot sector is used to launch the
833Linux kernel.
834
835If you do not need graphical output, you can disable it and redirect
836the virtual serial port and the QEMU monitor to the console with the
837@option{-nographic} option. The typical command line is:
838@example
839qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
840     -append "root=/dev/hda console=ttyS0" -nographic
841@end example
842
843Use @key{Ctrl-a c} to switch between the serial console and the
844monitor (@pxref{pcsys_keys}).
845
846@node pcsys_usb
847@section USB emulation
848
849QEMU emulates a PCI UHCI USB controller. You can virtually plug
850virtual USB devices or real host USB devices (experimental, works only
851on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
852as necessary to connect multiple USB devices.
853
854@menu
855* usb_devices::
856* host_usb_devices::
857@end menu
858@node usb_devices
859@subsection Connecting USB devices
860
861USB devices can be connected with the @option{-usbdevice} commandline option
862or the @code{usb_add} monitor command.  Available devices are:
863
864@table @code
865@item mouse
866Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
867@item tablet
868Pointer device that uses absolute coordinates (like a touchscreen).
869This means qemu is able to report the mouse position without having
870to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
871@item disk:@var{file}
872Mass storage device based on @var{file} (@pxref{disk_images})
873@item host:@var{bus.addr}
874Pass through the host device identified by @var{bus.addr}
875(Linux only)
876@item host:@var{vendor_id:product_id}
877Pass through the host device identified by @var{vendor_id:product_id}
878(Linux only)
879@item wacom-tablet
880Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
881above but it can be used with the tslib library because in addition to touch
882coordinates it reports touch pressure.
883@item keyboard
884Standard USB keyboard.  Will override the PS/2 keyboard (if present).
885@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
886Serial converter. This emulates an FTDI FT232BM chip connected to host character
887device @var{dev}. The available character devices are the same as for the
888@code{-serial} option. The @code{vendorid} and @code{productid} options can be
889used to override the default 0403:6001. For instance,
890@example
891usb_add serial:productid=FA00:tcp:192.168.0.2:4444
892@end example
893will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
894serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
895@item braille
896Braille device.  This will use BrlAPI to display the braille output on a real
897or fake device.
898@item net:@var{options}
899Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
900specifies NIC options as with @code{-net nic,}@var{options} (see description).
901For instance, user-mode networking can be used with
902@example
903qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
904@end example
905Currently this cannot be used in machines that support PCI NICs.
906@item bt[:@var{hci-type}]
907Bluetooth dongle whose type is specified in the same format as with
908the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
909no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
910This USB device implements the USB Transport Layer of HCI.  Example
911usage:
912@example
913qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
914@end example
915@end table
916
917@node host_usb_devices
918@subsection Using host USB devices on a Linux host
919
920WARNING: this is an experimental feature. QEMU will slow down when
921using it. USB devices requiring real time streaming (i.e. USB Video
922Cameras) are not supported yet.
923
924@enumerate
925@item If you use an early Linux 2.4 kernel, verify that no Linux driver
926is actually using the USB device. A simple way to do that is simply to
927disable the corresponding kernel module by renaming it from @file{mydriver.o}
928to @file{mydriver.o.disabled}.
929
930@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
931@example
932ls /proc/bus/usb
933001  devices  drivers
934@end example
935
936@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
937@example
938chown -R myuid /proc/bus/usb
939@end example
940
941@item Launch QEMU and do in the monitor:
942@example
943info usbhost
944  Device 1.2, speed 480 Mb/s
945    Class 00: USB device 1234:5678, USB DISK
946@end example
947You should see the list of the devices you can use (Never try to use
948hubs, it won't work).
949
950@item Add the device in QEMU by using:
951@example
952usb_add host:1234:5678
953@end example
954
955Normally the guest OS should report that a new USB device is
956plugged. You can use the option @option{-usbdevice} to do the same.
957
958@item Now you can try to use the host USB device in QEMU.
959
960@end enumerate
961
962When relaunching QEMU, you may have to unplug and plug again the USB
963device to make it work again (this is a bug).
964
965@node vnc_security
966@section VNC security
967
968The VNC server capability provides access to the graphical console
969of the guest VM across the network. This has a number of security
970considerations depending on the deployment scenarios.
971
972@menu
973* vnc_sec_none::
974* vnc_sec_password::
975* vnc_sec_certificate::
976* vnc_sec_certificate_verify::
977* vnc_sec_certificate_pw::
978* vnc_sec_sasl::
979* vnc_sec_certificate_sasl::
980* vnc_generate_cert::
981* vnc_setup_sasl::
982@end menu
983@node vnc_sec_none
984@subsection Without passwords
985
986The simplest VNC server setup does not include any form of authentication.
987For this setup it is recommended to restrict it to listen on a UNIX domain
988socket only. For example
989
990@example
991qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
992@end example
993
994This ensures that only users on local box with read/write access to that
995path can access the VNC server. To securely access the VNC server from a
996remote machine, a combination of netcat+ssh can be used to provide a secure
997tunnel.
998
999@node vnc_sec_password
1000@subsection With passwords
1001
1002The VNC protocol has limited support for password based authentication. Since
1003the protocol limits passwords to 8 characters it should not be considered
1004to provide high security. The password can be fairly easily brute-forced by
1005a client making repeat connections. For this reason, a VNC server using password
1006authentication should be restricted to only listen on the loopback interface
1007or UNIX domain sockets. Password authentication is requested with the @code{password}
1008option, and then once QEMU is running the password is set with the monitor. Until
1009the monitor is used to set the password all clients will be rejected.
1010
1011@example
1012qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1013(qemu) change vnc password
1014Password: ********
1015(qemu)
1016@end example
1017
1018@node vnc_sec_certificate
1019@subsection With x509 certificates
1020
1021The QEMU VNC server also implements the VeNCrypt extension allowing use of
1022TLS for encryption of the session, and x509 certificates for authentication.
1023The use of x509 certificates is strongly recommended, because TLS on its
1024own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1025support provides a secure session, but no authentication. This allows any
1026client to connect, and provides an encrypted session.
1027
1028@example
1029qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1030@end example
1031
1032In the above example @code{/etc/pki/qemu} should contain at least three files,
1033@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1034users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1035NB the @code{server-key.pem} file should be protected with file mode 0600 to
1036only be readable by the user owning it.
1037
1038@node vnc_sec_certificate_verify
1039@subsection With x509 certificates and client verification
1040
1041Certificates can also provide a means to authenticate the client connecting.
1042The server will request that the client provide a certificate, which it will
1043then validate against the CA certificate. This is a good choice if deploying
1044in an environment with a private internal certificate authority.
1045
1046@example
1047qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1048@end example
1049
1050
1051@node vnc_sec_certificate_pw
1052@subsection With x509 certificates, client verification and passwords
1053
1054Finally, the previous method can be combined with VNC password authentication
1055to provide two layers of authentication for clients.
1056
1057@example
1058qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1059(qemu) change vnc password
1060Password: ********
1061(qemu)
1062@end example
1063
1064
1065@node vnc_sec_sasl
1066@subsection With SASL authentication
1067
1068The SASL authentication method is a VNC extension, that provides an
1069easily extendable, pluggable authentication method. This allows for
1070integration with a wide range of authentication mechanisms, such as
1071PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1072The strength of the authentication depends on the exact mechanism
1073configured. If the chosen mechanism also provides a SSF layer, then
1074it will encrypt the datastream as well.
1075
1076Refer to the later docs on how to choose the exact SASL mechanism
1077used for authentication, but assuming use of one supporting SSF,
1078then QEMU can be launched with:
1079
1080@example
1081qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1082@end example
1083
1084@node vnc_sec_certificate_sasl
1085@subsection With x509 certificates and SASL authentication
1086
1087If the desired SASL authentication mechanism does not supported
1088SSF layers, then it is strongly advised to run it in combination
1089with TLS and x509 certificates. This provides securely encrypted
1090data stream, avoiding risk of compromising of the security
1091credentials. This can be enabled, by combining the 'sasl' option
1092with the aforementioned TLS + x509 options:
1093
1094@example
1095qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1096@end example
1097
1098
1099@node vnc_generate_cert
1100@subsection Generating certificates for VNC
1101
1102The GNU TLS packages provides a command called @code{certtool} which can
1103be used to generate certificates and keys in PEM format. At a minimum it
1104is necessary to setup a certificate authority, and issue certificates to
1105each server. If using certificates for authentication, then each client
1106will also need to be issued a certificate. The recommendation is for the
1107server to keep its certificates in either @code{/etc/pki/qemu} or for
1108unprivileged users in @code{$HOME/.pki/qemu}.
1109
1110@menu
1111* vnc_generate_ca::
1112* vnc_generate_server::
1113* vnc_generate_client::
1114@end menu
1115@node vnc_generate_ca
1116@subsubsection Setup the Certificate Authority
1117
1118This step only needs to be performed once per organization / organizational
1119unit. First the CA needs a private key. This key must be kept VERY secret
1120and secure. If this key is compromised the entire trust chain of the certificates
1121issued with it is lost.
1122
1123@example
1124# certtool --generate-privkey > ca-key.pem
1125@end example
1126
1127A CA needs to have a public certificate. For simplicity it can be a self-signed
1128certificate, or one issue by a commercial certificate issuing authority. To
1129generate a self-signed certificate requires one core piece of information, the
1130name of the organization.
1131
1132@example
1133# cat > ca.info <<EOF
1134cn = Name of your organization
1135ca
1136cert_signing_key
1137EOF
1138# certtool --generate-self-signed \
1139           --load-privkey ca-key.pem
1140           --template ca.info \
1141           --outfile ca-cert.pem
1142@end example
1143
1144The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1145TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1146
1147@node vnc_generate_server
1148@subsubsection Issuing server certificates
1149
1150Each server (or host) needs to be issued with a key and certificate. When connecting
1151the certificate is sent to the client which validates it against the CA certificate.
1152The core piece of information for a server certificate is the hostname. This should
1153be the fully qualified hostname that the client will connect with, since the client
1154will typically also verify the hostname in the certificate. On the host holding the
1155secure CA private key:
1156
1157@example
1158# cat > server.info <<EOF
1159organization = Name  of your organization
1160cn = server.foo.example.com
1161tls_www_server
1162encryption_key
1163signing_key
1164EOF
1165# certtool --generate-privkey > server-key.pem
1166# certtool --generate-certificate \
1167           --load-ca-certificate ca-cert.pem \
1168           --load-ca-privkey ca-key.pem \
1169           --load-privkey server server-key.pem \
1170           --template server.info \
1171           --outfile server-cert.pem
1172@end example
1173
1174The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1175to the server for which they were generated. The @code{server-key.pem} is security
1176sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1177
1178@node vnc_generate_client
1179@subsubsection Issuing client certificates
1180
1181If the QEMU VNC server is to use the @code{x509verify} option to validate client
1182certificates as its authentication mechanism, each client also needs to be issued
1183a certificate. The client certificate contains enough metadata to uniquely identify
1184the client, typically organization, state, city, building, etc. On the host holding
1185the secure CA private key:
1186
1187@example
1188# cat > client.info <<EOF
1189country = GB
1190state = London
1191locality = London
1192organiazation = Name of your organization
1193cn = client.foo.example.com
1194tls_www_client
1195encryption_key
1196signing_key
1197EOF
1198# certtool --generate-privkey > client-key.pem
1199# certtool --generate-certificate \
1200           --load-ca-certificate ca-cert.pem \
1201           --load-ca-privkey ca-key.pem \
1202           --load-privkey client-key.pem \
1203           --template client.info \
1204           --outfile client-cert.pem
1205@end example
1206
1207The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1208copied to the client for which they were generated.
1209
1210
1211@node vnc_setup_sasl
1212
1213@subsection Configuring SASL mechanisms
1214
1215The following documentation assumes use of the Cyrus SASL implementation on a
1216Linux host, but the principals should apply to any other SASL impl. When SASL
1217is enabled, the mechanism configuration will be loaded from system default
1218SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1219unprivileged user, an environment variable SASL_CONF_PATH can be used
1220to make it search alternate locations for the service config.
1221
1222The default configuration might contain
1223
1224@example
1225mech_list: digest-md5
1226sasldb_path: /etc/qemu/passwd.db
1227@end example
1228
1229This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1230Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1231in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1232command. While this mechanism is easy to configure and use, it is not
1233considered secure by modern standards, so only suitable for developers /
1234ad-hoc testing.
1235
1236A more serious deployment might use Kerberos, which is done with the 'gssapi'
1237mechanism
1238
1239@example
1240mech_list: gssapi
1241keytab: /etc/qemu/krb5.tab
1242@end example
1243
1244For this to work the administrator of your KDC must generate a Kerberos
1245principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1246replacing 'somehost.example.com' with the fully qualified host name of the
1247machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1248
1249Other configurations will be left as an exercise for the reader. It should
1250be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1251encryption. For all other mechanisms, VNC should always be configured to
1252use TLS and x509 certificates to protect security credentials from snooping.
1253
1254@node gdb_usage
1255@section GDB usage
1256
1257QEMU has a primitive support to work with gdb, so that you can do
1258'Ctrl-C' while the virtual machine is running and inspect its state.
1259
1260In order to use gdb, launch qemu with the '-s' option. It will wait for a
1261gdb connection:
1262@example
1263> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1264       -append "root=/dev/hda"
1265Connected to host network interface: tun0
1266Waiting gdb connection on port 1234
1267@end example
1268
1269Then launch gdb on the 'vmlinux' executable:
1270@example
1271> gdb vmlinux
1272@end example
1273
1274In gdb, connect to QEMU:
1275@example
1276(gdb) target remote localhost:1234
1277@end example
1278
1279Then you can use gdb normally. For example, type 'c' to launch the kernel:
1280@example
1281(gdb) c
1282@end example
1283
1284Here are some useful tips in order to use gdb on system code:
1285
1286@enumerate
1287@item
1288Use @code{info reg} to display all the CPU registers.
1289@item
1290Use @code{x/10i $eip} to display the code at the PC position.
1291@item
1292Use @code{set architecture i8086} to dump 16 bit code. Then use
1293@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1294@end enumerate
1295
1296Advanced debugging options:
1297
1298The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1299@table @code
1300@item maintenance packet qqemu.sstepbits
1301
1302This will display the MASK bits used to control the single stepping IE:
1303@example
1304(gdb) maintenance packet qqemu.sstepbits
1305sending: "qqemu.sstepbits"
1306received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1307@end example
1308@item maintenance packet qqemu.sstep
1309
1310This will display the current value of the mask used when single stepping IE:
1311@example
1312(gdb) maintenance packet qqemu.sstep
1313sending: "qqemu.sstep"
1314received: "0x7"
1315@end example
1316@item maintenance packet Qqemu.sstep=HEX_VALUE
1317
1318This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1319@example
1320(gdb) maintenance packet Qqemu.sstep=0x5
1321sending: "qemu.sstep=0x5"
1322received: "OK"
1323@end example
1324@end table
1325
1326@node pcsys_os_specific
1327@section Target OS specific information
1328
1329@subsection Linux
1330
1331To have access to SVGA graphic modes under X11, use the @code{vesa} or
1332the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1333color depth in the guest and the host OS.
1334
1335When using a 2.6 guest Linux kernel, you should add the option
1336@code{clock=pit} on the kernel command line because the 2.6 Linux
1337kernels make very strict real time clock checks by default that QEMU
1338cannot simulate exactly.
1339
1340When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1341not activated because QEMU is slower with this patch. The QEMU
1342Accelerator Module is also much slower in this case. Earlier Fedora
1343Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1344patch by default. Newer kernels don't have it.
1345
1346@subsection Windows
1347
1348If you have a slow host, using Windows 95 is better as it gives the
1349best speed. Windows 2000 is also a good choice.
1350
1351@subsubsection SVGA graphic modes support
1352
1353QEMU emulates a Cirrus Logic GD5446 Video
1354card. All Windows versions starting from Windows 95 should recognize
1355and use this graphic card. For optimal performances, use 16 bit color
1356depth in the guest and the host OS.
1357
1358If you are using Windows XP as guest OS and if you want to use high
1359resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
13601280x1024x16), then you should use the VESA VBE virtual graphic card
1361(option @option{-std-vga}).
1362
1363@subsubsection CPU usage reduction
1364
1365Windows 9x does not correctly use the CPU HLT
1366instruction. The result is that it takes host CPU cycles even when
1367idle. You can install the utility from
1368@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1369problem. Note that no such tool is needed for NT, 2000 or XP.
1370
1371@subsubsection Windows 2000 disk full problem
1372
1373Windows 2000 has a bug which gives a disk full problem during its
1374installation. When installing it, use the @option{-win2k-hack} QEMU
1375option to enable a specific workaround. After Windows 2000 is
1376installed, you no longer need this option (this option slows down the
1377IDE transfers).
1378
1379@subsubsection Windows 2000 shutdown
1380
1381Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1382can. It comes from the fact that Windows 2000 does not automatically
1383use the APM driver provided by the BIOS.
1384
1385In order to correct that, do the following (thanks to Struan
1386Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1387Add/Troubleshoot a device => Add a new device & Next => No, select the
1388hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1389(again) a few times. Now the driver is installed and Windows 2000 now
1390correctly instructs QEMU to shutdown at the appropriate moment.
1391
1392@subsubsection Share a directory between Unix and Windows
1393
1394See @ref{sec_invocation} about the help of the option @option{-smb}.
1395
1396@subsubsection Windows XP security problem
1397
1398Some releases of Windows XP install correctly but give a security
1399error when booting:
1400@example
1401A problem is preventing Windows from accurately checking the
1402license for this computer. Error code: 0x800703e6.
1403@end example
1404
1405The workaround is to install a service pack for XP after a boot in safe
1406mode. Then reboot, and the problem should go away. Since there is no
1407network while in safe mode, its recommended to download the full
1408installation of SP1 or SP2 and transfer that via an ISO or using the
1409vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1410
1411@subsection MS-DOS and FreeDOS
1412
1413@subsubsection CPU usage reduction
1414
1415DOS does not correctly use the CPU HLT instruction. The result is that
1416it takes host CPU cycles even when idle. You can install the utility
1417from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1418problem.
1419
1420@node QEMU System emulator for non PC targets
1421@chapter QEMU System emulator for non PC targets
1422
1423QEMU is a generic emulator and it emulates many non PC
1424machines. Most of the options are similar to the PC emulator. The
1425differences are mentioned in the following sections.
1426
1427@menu
1428* PowerPC System emulator::
1429* Sparc32 System emulator::
1430* Sparc64 System emulator::
1431* MIPS System emulator::
1432* ARM System emulator::
1433* ColdFire System emulator::
1434* Cris System emulator::
1435* Microblaze System emulator::
1436* SH4 System emulator::
1437@end menu
1438
1439@node PowerPC System emulator
1440@section PowerPC System emulator
1441@cindex system emulation (PowerPC)
1442
1443Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1444or PowerMac PowerPC system.
1445
1446QEMU emulates the following PowerMac peripherals:
1447
1448@itemize @minus
1449@item
1450UniNorth or Grackle PCI Bridge
1451@item
1452PCI VGA compatible card with VESA Bochs Extensions
1453@item
14542 PMAC IDE interfaces with hard disk and CD-ROM support
1455@item
1456NE2000 PCI adapters
1457@item
1458Non Volatile RAM
1459@item
1460VIA-CUDA with ADB keyboard and mouse.
1461@end itemize
1462
1463QEMU emulates the following PREP peripherals:
1464
1465@itemize @minus
1466@item
1467PCI Bridge
1468@item
1469PCI VGA compatible card with VESA Bochs Extensions
1470@item
14712 IDE interfaces with hard disk and CD-ROM support
1472@item
1473Floppy disk
1474@item
1475NE2000 network adapters
1476@item
1477Serial port
1478@item
1479PREP Non Volatile RAM
1480@item
1481PC compatible keyboard and mouse.
1482@end itemize
1483
1484QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1485@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1486
1487Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1488for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1489v2) portable firmware implementation. The goal is to implement a 100%
1490IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1491
1492@c man begin OPTIONS
1493
1494The following options are specific to the PowerPC emulation:
1495
1496@table @option
1497
1498@item -g @var{W}x@var{H}[x@var{DEPTH}]
1499
1500Set the initial VGA graphic mode. The default is 800x600x15.
1501
1502@item -prom-env @var{string}
1503
1504Set OpenBIOS variables in NVRAM, for example:
1505
1506@example
1507qemu-system-ppc -prom-env 'auto-boot?=false' \
1508 -prom-env 'boot-device=hd:2,\yaboot' \
1509 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1510@end example
1511
1512These variables are not used by Open Hack'Ware.
1513
1514@end table
1515
1516@c man end
1517
1518
1519More information is available at
1520@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1521
1522@node Sparc32 System emulator
1523@section Sparc32 System emulator
1524@cindex system emulation (Sparc32)
1525
1526Use the executable @file{qemu-system-sparc} to simulate the following
1527Sun4m architecture machines:
1528@itemize @minus
1529@item
1530SPARCstation 4
1531@item
1532SPARCstation 5
1533@item
1534SPARCstation 10
1535@item
1536SPARCstation 20
1537@item
1538SPARCserver 600MP
1539@item
1540SPARCstation LX
1541@item
1542SPARCstation Voyager
1543@item
1544SPARCclassic
1545@item
1546SPARCbook
1547@end itemize
1548
1549The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1550but Linux limits the number of usable CPUs to 4.
1551
1552It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1553SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1554emulators are not usable yet.
1555
1556QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1557
1558@itemize @minus
1559@item
1560IOMMU or IO-UNITs
1561@item
1562TCX Frame buffer
1563@item
1564Lance (Am7990) Ethernet
1565@item
1566Non Volatile RAM M48T02/M48T08
1567@item
1568Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1569and power/reset logic
1570@item
1571ESP SCSI controller with hard disk and CD-ROM support
1572@item
1573Floppy drive (not on SS-600MP)
1574@item
1575CS4231 sound device (only on SS-5, not working yet)
1576@end itemize
1577
1578The number of peripherals is fixed in the architecture.  Maximum
1579memory size depends on the machine type, for SS-5 it is 256MB and for
1580others 2047MB.
1581
1582Since version 0.8.2, QEMU uses OpenBIOS
1583@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1584firmware implementation. The goal is to implement a 100% IEEE
15851275-1994 (referred to as Open Firmware) compliant firmware.
1586
1587A sample Linux 2.6 series kernel and ram disk image are available on
1588the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1589some kernel versions work. Please note that currently Solaris kernels
1590don't work probably due to interface issues between OpenBIOS and
1591Solaris.
1592
1593@c man begin OPTIONS
1594
1595The following options are specific to the Sparc32 emulation:
1596
1597@table @option
1598
1599@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1600
1601Set the initial TCX graphic mode. The default is 1024x768x8, currently
1602the only other possible mode is 1024x768x24.
1603
1604@item -prom-env @var{string}
1605
1606Set OpenBIOS variables in NVRAM, for example:
1607
1608@example
1609qemu-system-sparc -prom-env 'auto-boot?=false' \
1610 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1611@end example
1612
1613@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1614
1615Set the emulated machine type. Default is SS-5.
1616
1617@end table
1618
1619@c man end
1620
1621@node Sparc64 System emulator
1622@section Sparc64 System emulator
1623@cindex system emulation (Sparc64)
1624
1625Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1626(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1627Niagara (T1) machine. The emulator is not usable for anything yet, but
1628it can launch some kernels.
1629
1630QEMU emulates the following peripherals:
1631
1632@itemize @minus
1633@item
1634UltraSparc IIi APB PCI Bridge
1635@item
1636PCI VGA compatible card with VESA Bochs Extensions
1637@item
1638PS/2 mouse and keyboard
1639@item
1640Non Volatile RAM M48T59
1641@item
1642PC-compatible serial ports
1643@item
16442 PCI IDE interfaces with hard disk and CD-ROM support
1645@item
1646Floppy disk
1647@end itemize
1648
1649@c man begin OPTIONS
1650
1651The following options are specific to the Sparc64 emulation:
1652
1653@table @option
1654
1655@item -prom-env @var{string}
1656
1657Set OpenBIOS variables in NVRAM, for example:
1658
1659@example
1660qemu-system-sparc64 -prom-env 'auto-boot?=false'
1661@end example
1662
1663@item -M [sun4u|sun4v|Niagara]
1664
1665Set the emulated machine type. The default is sun4u.
1666
1667@end table
1668
1669@c man end
1670
1671@node MIPS System emulator
1672@section MIPS System emulator
1673@cindex system emulation (MIPS)
1674
1675Four executables cover simulation of 32 and 64-bit MIPS systems in
1676both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1677@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1678Five different machine types are emulated:
1679
1680@itemize @minus
1681@item
1682A generic ISA PC-like machine "mips"
1683@item
1684The MIPS Malta prototype board "malta"
1685@item
1686An ACER Pica "pica61". This machine needs the 64-bit emulator.
1687@item
1688MIPS emulator pseudo board "mipssim"
1689@item
1690A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1691@end itemize
1692
1693The generic emulation is supported by Debian 'Etch' and is able to
1694install Debian into a virtual disk image. The following devices are
1695emulated:
1696
1697@itemize @minus
1698@item
1699A range of MIPS CPUs, default is the 24Kf
1700@item
1701PC style serial port
1702@item
1703PC style IDE disk
1704@item
1705NE2000 network card
1706@end itemize
1707
1708The Malta emulation supports the following devices:
1709
1710@itemize @minus
1711@item
1712Core board with MIPS 24Kf CPU and Galileo system controller
1713@item
1714PIIX4 PCI/USB/SMbus controller
1715@item
1716The Multi-I/O chip's serial device
1717@item
1718PCI network cards (PCnet32 and others)
1719@item
1720Malta FPGA serial device
1721@item
1722Cirrus (default) or any other PCI VGA graphics card
1723@end itemize
1724
1725The ACER Pica emulation supports:
1726
1727@itemize @minus
1728@item
1729MIPS R4000 CPU
1730@item
1731PC-style IRQ and DMA controllers
1732@item
1733PC Keyboard
1734@item
1735IDE controller
1736@end itemize
1737
1738The mipssim pseudo board emulation provides an environment similiar
1739to what the proprietary MIPS emulator uses for running Linux.
1740It supports:
1741
1742@itemize @minus
1743@item
1744A range of MIPS CPUs, default is the 24Kf
1745@item
1746PC style serial port
1747@item
1748MIPSnet network emulation
1749@end itemize
1750
1751The MIPS Magnum R4000 emulation supports:
1752
1753@itemize @minus
1754@item
1755MIPS R4000 CPU
1756@item
1757PC-style IRQ controller
1758@item
1759PC Keyboard
1760@item
1761SCSI controller
1762@item
1763G364 framebuffer
1764@end itemize
1765
1766
1767@node ARM System emulator
1768@section ARM System emulator
1769@cindex system emulation (ARM)
1770
1771Use the executable @file{qemu-system-arm} to simulate a ARM
1772machine. The ARM Integrator/CP board is emulated with the following
1773devices:
1774
1775@itemize @minus
1776@item
1777ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1778@item
1779Two PL011 UARTs
1780@item
1781SMC 91c111 Ethernet adapter
1782@item
1783PL110 LCD controller
1784@item
1785PL050 KMI with PS/2 keyboard and mouse.
1786@item
1787PL181 MultiMedia Card Interface with SD card.
1788@end itemize
1789
1790The ARM Versatile baseboard is emulated with the following devices:
1791
1792@itemize @minus
1793@item
1794ARM926E, ARM1136 or Cortex-A8 CPU
1795@item
1796PL190 Vectored Interrupt Controller
1797@item
1798Four PL011 UARTs
1799@item
1800SMC 91c111 Ethernet adapter
1801@item
1802PL110 LCD controller
1803@item
1804PL050 KMI with PS/2 keyboard and mouse.
1805@item
1806PCI host bridge.  Note the emulated PCI bridge only provides access to
1807PCI memory space.  It does not provide access to PCI IO space.
1808This means some devices (eg. ne2k_pci NIC) are not usable, and others
1809(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1810mapped control registers.
1811@item
1812PCI OHCI USB controller.
1813@item
1814LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1815@item
1816PL181 MultiMedia Card Interface with SD card.
1817@end itemize
1818
1819Several variants of the ARM RealView baseboard are emulated,
1820including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1821bootloader, only certain Linux kernel configurations work out
1822of the box on these boards.
1823
1824Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1825enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1826should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1827disabled and expect 1024M RAM.
1828
1829The following devices are emulated:
1830
1831@itemize @minus
1832@item
1833ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1834@item
1835ARM AMBA Generic/Distributed Interrupt Controller
1836@item
1837Four PL011 UARTs
1838@item
1839SMC 91c111 or SMSC LAN9118 Ethernet adapter
1840@item
1841PL110 LCD controller
1842@item
1843PL050 KMI with PS/2 keyboard and mouse
1844@item
1845PCI host bridge
1846@item
1847PCI OHCI USB controller
1848@item
1849LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1850@item
1851PL181 MultiMedia Card Interface with SD card.
1852@end itemize
1853
1854The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1855and "Terrier") emulation includes the following peripherals:
1856
1857@itemize @minus
1858@item
1859Intel PXA270 System-on-chip (ARM V5TE core)
1860@item
1861NAND Flash memory
1862@item
1863IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1864@item
1865On-chip OHCI USB controller
1866@item
1867On-chip LCD controller
1868@item
1869On-chip Real Time Clock
1870@item
1871TI ADS7846 touchscreen controller on SSP bus
1872@item
1873Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1874@item
1875GPIO-connected keyboard controller and LEDs
1876@item
1877Secure Digital card connected to PXA MMC/SD host
1878@item
1879Three on-chip UARTs
1880@item
1881WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1882@end itemize
1883
1884The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1885following elements:
1886
1887@itemize @minus
1888@item
1889Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1890@item
1891ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1892@item
1893On-chip LCD controller
1894@item
1895On-chip Real Time Clock
1896@item
1897TI TSC2102i touchscreen controller / analog-digital converter / Audio
1898CODEC, connected through MicroWire and I@math{^2}S busses
1899@item
1900GPIO-connected matrix keypad
1901@item
1902Secure Digital card connected to OMAP MMC/SD host
1903@item
1904Three on-chip UARTs
1905@end itemize
1906
1907Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1908emulation supports the following elements:
1909
1910@itemize @minus
1911@item
1912Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1913@item
1914RAM and non-volatile OneNAND Flash memories
1915@item
1916Display connected to EPSON remote framebuffer chip and OMAP on-chip
1917display controller and a LS041y3 MIPI DBI-C controller
1918@item
1919TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1920driven through SPI bus
1921@item
1922National Semiconductor LM8323-controlled qwerty keyboard driven
1923through I@math{^2}C bus
1924@item
1925Secure Digital card connected to OMAP MMC/SD host
1926@item
1927Three OMAP on-chip UARTs and on-chip STI debugging console
1928@item
1929A Bluetooth(R) transceiver and HCI connected to an UART
1930@item
1931Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1932TUSB6010 chip - only USB host mode is supported
1933@item
1934TI TMP105 temperature sensor driven through I@math{^2}C bus
1935@item
1936TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1937@item
1938Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1939through CBUS
1940@end itemize
1941
1942The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1943devices:
1944
1945@itemize @minus
1946@item
1947Cortex-M3 CPU core.
1948@item
194964k Flash and 8k SRAM.
1950@item
1951Timers, UARTs, ADC and I@math{^2}C interface.
1952@item
1953OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1954@end itemize
1955
1956The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1957devices:
1958
1959@itemize @minus
1960@item
1961Cortex-M3 CPU core.
1962@item
1963256k Flash and 64k SRAM.
1964@item
1965Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1966@item
1967OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1968@end itemize
1969
1970The Freecom MusicPal internet radio emulation includes the following
1971elements:
1972
1973@itemize @minus
1974@item
1975Marvell MV88W8618 ARM core.
1976@item
197732 MB RAM, 256 KB SRAM, 8 MB flash.
1978@item
1979Up to 2 16550 UARTs
1980@item
1981MV88W8xx8 Ethernet controller
1982@item
1983MV88W8618 audio controller, WM8750 CODEC and mixer
1984@item
1985128×64 display with brightness control
1986@item
19872 buttons, 2 navigation wheels with button function
1988@end itemize
1989
1990The Siemens SX1 models v1 and v2 (default) basic emulation.
1991The emulation includes the following elements:
1992
1993@itemize @minus
1994@item
1995Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1996@item
1997ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1998V1
19991 Flash of 16MB and 1 Flash of 8MB
2000V2
20011 Flash of 32MB
2002@item
2003On-chip LCD controller
2004@item
2005On-chip Real Time Clock
2006@item
2007Secure Digital card connected to OMAP MMC/SD host
2008@item
2009Three on-chip UARTs
2010@end itemize
2011
2012The "Syborg" Symbian Virtual Platform base model includes the following
2013elements:
2014
2015@itemize @minus
2016@item
2017ARM Cortex-A8 CPU
2018@item
2019Interrupt controller
2020@item
2021Timer
2022@item
2023Real Time Clock
2024@item
2025Keyboard
2026@item
2027Framebuffer
2028@item
2029Touchscreen
2030@item
2031UARTs
2032@end itemize
2033
2034A Linux 2.6 test image is available on the QEMU web site. More
2035information is available in the QEMU mailing-list archive.
2036
2037@c man begin OPTIONS
2038
2039The following options are specific to the ARM emulation:
2040
2041@table @option
2042
2043@item -semihosting
2044Enable semihosting syscall emulation.
2045
2046On ARM this implements the "Angel" interface.
2047
2048Note that this allows guest direct access to the host filesystem,
2049so should only be used with trusted guest OS.
2050
2051@end table
2052
2053@node ColdFire System emulator
2054@section ColdFire System emulator
2055@cindex system emulation (ColdFire)
2056@cindex system emulation (M68K)
2057
2058Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2059The emulator is able to boot a uClinux kernel.
2060
2061The M5208EVB emulation includes the following devices:
2062
2063@itemize @minus
2064@item
2065MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2066@item
2067Three Two on-chip UARTs.
2068@item
2069Fast Ethernet Controller (FEC)
2070@end itemize
2071
2072The AN5206 emulation includes the following devices:
2073
2074@itemize @minus
2075@item
2076MCF5206 ColdFire V2 Microprocessor.
2077@item
2078Two on-chip UARTs.
2079@end itemize
2080
2081@c man begin OPTIONS
2082
2083The following options are specific to the ColdFire emulation:
2084
2085@table @option
2086
2087@item -semihosting
2088Enable semihosting syscall emulation.
2089
2090On M68K this implements the "ColdFire GDB" interface used by libgloss.
2091
2092Note that this allows guest direct access to the host filesystem,
2093so should only be used with trusted guest OS.
2094
2095@end table
2096
2097@node Cris System emulator
2098@section Cris System emulator
2099@cindex system emulation (Cris)
2100
2101TODO
2102
2103@node Microblaze System emulator
2104@section Microblaze System emulator
2105@cindex system emulation (Microblaze)
2106
2107TODO
2108
2109@node SH4 System emulator
2110@section SH4 System emulator
2111@cindex system emulation (SH4)
2112
2113TODO
2114
2115@node QEMU User space emulator
2116@chapter QEMU User space emulator
2117
2118@menu
2119* Supported Operating Systems ::
2120* Linux User space emulator::
2121* Mac OS X/Darwin User space emulator ::
2122* BSD User space emulator ::
2123@end menu
2124
2125@node Supported Operating Systems
2126@section Supported Operating Systems
2127
2128The following OS are supported in user space emulation:
2129
2130@itemize @minus
2131@item
2132Linux (referred as qemu-linux-user)
2133@item
2134Mac OS X/Darwin (referred as qemu-darwin-user)
2135@item
2136BSD (referred as qemu-bsd-user)
2137@end itemize
2138
2139@node Linux User space emulator
2140@section Linux User space emulator
2141
2142@menu
2143* Quick Start::
2144* Wine launch::
2145* Command line options::
2146* Other binaries::
2147@end menu
2148
2149@node Quick Start
2150@subsection Quick Start
2151
2152In order to launch a Linux process, QEMU needs the process executable
2153itself and all the target (x86) dynamic libraries used by it.
2154
2155@itemize
2156
2157@item On x86, you can just try to launch any process by using the native
2158libraries:
2159
2160@example
2161qemu-i386 -L / /bin/ls
2162@end example
2163
2164@code{-L /} tells that the x86 dynamic linker must be searched with a
2165@file{/} prefix.
2166
2167@item Since QEMU is also a linux process, you can launch qemu with
2168qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2169
2170@example
2171qemu-i386 -L / qemu-i386 -L / /bin/ls
2172@end example
2173
2174@item On non x86 CPUs, you need first to download at least an x86 glibc
2175(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2176@code{LD_LIBRARY_PATH} is not set:
2177
2178@example
2179unset LD_LIBRARY_PATH
2180@end example
2181
2182Then you can launch the precompiled @file{ls} x86 executable:
2183
2184@example
2185qemu-i386 tests/i386/ls
2186@end example
2187You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2188QEMU is automatically launched by the Linux kernel when you try to
2189launch x86 executables. It requires the @code{binfmt_misc} module in the
2190Linux kernel.
2191
2192@item The x86 version of QEMU is also included. You can try weird things such as:
2193@example
2194qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2195          /usr/local/qemu-i386/bin/ls-i386
2196@end example
2197
2198@end itemize
2199
2200@node Wine launch
2201@subsection Wine launch
2202
2203@itemize
2204
2205@item Ensure that you have a working QEMU with the x86 glibc
2206distribution (see previous section). In order to verify it, you must be
2207able to do:
2208
2209@example
2210qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2211@end example
2212
2213@item Download the binary x86 Wine install
2214(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2215
2216@item Configure Wine on your account. Look at the provided script
2217@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2218@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2219
2220@item Then you can try the example @file{putty.exe}:
2221
2222@example
2223qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2224          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2225@end example
2226
2227@end itemize
2228
2229@node Command line options
2230@subsection Command line options
2231
2232@example
2233usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2234@end example
2235
2236@table @option
2237@item -h
2238Print the help
2239@item -L path
2240Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2241@item -s size
2242Set the x86 stack size in bytes (default=524288)
2243@item -cpu model
2244Select CPU model (-cpu ? for list and additional feature selection)
2245@item -ignore-environment
2246Start with an empty environment. Without this option,
2247the initial environment is a copy of the caller's environment.
2248@item -E @var{var}=@var{value}
2249Set environment @var{var} to @var{value}.
2250@item -U @var{var}
2251Remove @var{var} from the environment.
2252@item -B offset
2253Offset guest address by the specified number of bytes.  This is useful when
2254the address region required by guest applications is reserved on the host.
2255This option is currently only supported on some hosts.
2256@item -R size
2257Pre-allocate a guest virtual address space of the given size (in bytes).
2258"G", "M", and "k" suffixes may be used when specifying the size.
2259@end table
2260
2261Debug options:
2262
2263@table @option
2264@item -d
2265Activate log (logfile=/tmp/qemu.log)
2266@item -p pagesize
2267Act as if the host page size was 'pagesize' bytes
2268@item -g port
2269Wait gdb connection to port
2270@item -singlestep
2271Run the emulation in single step mode.
2272@end table
2273
2274Environment variables:
2275
2276@table @env
2277@item QEMU_STRACE
2278Print system calls and arguments similar to the 'strace' program
2279(NOTE: the actual 'strace' program will not work because the user
2280space emulator hasn't implemented ptrace).  At the moment this is
2281incomplete.  All system calls that don't have a specific argument
2282format are printed with information for six arguments.  Many
2283flag-style arguments don't have decoders and will show up as numbers.
2284@end table
2285
2286@node Other binaries
2287@subsection Other binaries
2288
2289@cindex user mode (Alpha)
2290@command{qemu-alpha} TODO.
2291
2292@cindex user mode (ARM)
2293@command{qemu-armeb} TODO.
2294
2295@cindex user mode (ARM)
2296@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2297binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2298configurations), and arm-uclinux bFLT format binaries.
2299
2300@cindex user mode (ColdFire)
2301@cindex user mode (M68K)
2302@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2303(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2304coldfire uClinux bFLT format binaries.
2305
2306The binary format is detected automatically.
2307
2308@cindex user mode (Cris)
2309@command{qemu-cris} TODO.
2310
2311@cindex user mode (i386)
2312@command{qemu-i386} TODO.
2313@command{qemu-x86_64} TODO.
2314
2315@cindex user mode (Microblaze)
2316@command{qemu-microblaze} TODO.
2317
2318@cindex user mode (MIPS)
2319@command{qemu-mips} TODO.
2320@command{qemu-mipsel} TODO.
2321
2322@cindex user mode (PowerPC)
2323@command{qemu-ppc64abi32} TODO.
2324@command{qemu-ppc64} TODO.
2325@command{qemu-ppc} TODO.
2326
2327@cindex user mode (SH4)
2328@command{qemu-sh4eb} TODO.
2329@command{qemu-sh4} TODO.
2330
2331@cindex user mode (SPARC)
2332@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2333
2334@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2335(Sparc64 CPU, 32 bit ABI).
2336
2337@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2338SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2339
2340@node Mac OS X/Darwin User space emulator
2341@section Mac OS X/Darwin User space emulator
2342
2343@menu
2344* Mac OS X/Darwin Status::
2345* Mac OS X/Darwin Quick Start::
2346* Mac OS X/Darwin Command line options::
2347@end menu
2348
2349@node Mac OS X/Darwin Status
2350@subsection Mac OS X/Darwin Status
2351
2352@itemize @minus
2353@item
2354target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2355@item
2356target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2357@item
2358target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2359@item
2360target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2361@end itemize
2362
2363[1] If you're host commpage can be executed by qemu.
2364
2365@node Mac OS X/Darwin Quick Start
2366@subsection Quick Start
2367
2368In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2369itself and all the target dynamic libraries used by it. If you don't have the FAT
2370libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2371CD or compile them by hand.
2372
2373@itemize
2374
2375@item On x86, you can just try to launch any process by using the native
2376libraries:
2377
2378@example
2379qemu-i386 /bin/ls
2380@end example
2381
2382or to run the ppc version of the executable:
2383
2384@example
2385qemu-ppc /bin/ls
2386@end example
2387
2388@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2389are installed:
2390
2391@example
2392qemu-i386 -L /opt/x86_root/ /bin/ls
2393@end example
2394
2395@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2396@file{/opt/x86_root/usr/bin/dyld}.
2397
2398@end itemize
2399
2400@node Mac OS X/Darwin Command line options
2401@subsection Command line options
2402
2403@example
2404usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2405@end example
2406
2407@table @option
2408@item -h
2409Print the help
2410@item -L path
2411Set the library root path (default=/)
2412@item -s size
2413Set the stack size in bytes (default=524288)
2414@end table
2415
2416Debug options:
2417
2418@table @option
2419@item -d
2420Activate log (logfile=/tmp/qemu.log)
2421@item -p pagesize
2422Act as if the host page size was 'pagesize' bytes
2423@item -singlestep
2424Run the emulation in single step mode.
2425@end table
2426
2427@node BSD User space emulator
2428@section BSD User space emulator
2429
2430@menu
2431* BSD Status::
2432* BSD Quick Start::
2433* BSD Command line options::
2434@end menu
2435
2436@node BSD Status
2437@subsection BSD Status
2438
2439@itemize @minus
2440@item
2441target Sparc64 on Sparc64: Some trivial programs work.
2442@end itemize
2443
2444@node BSD Quick Start
2445@subsection Quick Start
2446
2447In order to launch a BSD process, QEMU needs the process executable
2448itself and all the target dynamic libraries used by it.
2449
2450@itemize
2451
2452@item On Sparc64, you can just try to launch any process by using the native
2453libraries:
2454
2455@example
2456qemu-sparc64 /bin/ls
2457@end example
2458
2459@end itemize
2460
2461@node BSD Command line options
2462@subsection Command line options
2463
2464@example
2465usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2466@end example
2467
2468@table @option
2469@item -h
2470Print the help
2471@item -L path
2472Set the library root path (default=/)
2473@item -s size
2474Set the stack size in bytes (default=524288)
2475@item -ignore-environment
2476Start with an empty environment. Without this option,
2477the initial environment is a copy of the caller's environment.
2478@item -E @var{var}=@var{value}
2479Set environment @var{var} to @var{value}.
2480@item -U @var{var}
2481Remove @var{var} from the environment.
2482@item -bsd type
2483Set the type of the emulated BSD Operating system. Valid values are
2484FreeBSD, NetBSD and OpenBSD (default).
2485@end table
2486
2487Debug options:
2488
2489@table @option
2490@item -d
2491Activate log (logfile=/tmp/qemu.log)
2492@item -p pagesize
2493Act as if the host page size was 'pagesize' bytes
2494@item -singlestep
2495Run the emulation in single step mode.
2496@end table
2497
2498@node compilation
2499@chapter Compilation from the sources
2500
2501@menu
2502* Linux/Unix::
2503* Windows::
2504* Cross compilation for Windows with Linux::
2505* Mac OS X::
2506* Make targets::
2507@end menu
2508
2509@node Linux/Unix
2510@section Linux/Unix
2511
2512@subsection Compilation
2513
2514First you must decompress the sources:
2515@example
2516cd /tmp
2517tar zxvf qemu-x.y.z.tar.gz
2518cd qemu-x.y.z
2519@end example
2520
2521Then you configure QEMU and build it (usually no options are needed):
2522@example
2523./configure
2524make
2525@end example
2526
2527Then type as root user:
2528@example
2529make install
2530@end example
2531to install QEMU in @file{/usr/local}.
2532
2533@node Windows
2534@section Windows
2535
2536@itemize
2537@item Install the current versions of MSYS and MinGW from
2538@url{http://www.mingw.org/}. You can find detailed installation
2539instructions in the download section and the FAQ.
2540
2541@item Download
2542the MinGW development library of SDL 1.2.x
2543(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2544@url{http://www.libsdl.org}. Unpack it in a temporary place and
2545edit the @file{sdl-config} script so that it gives the
2546correct SDL directory when invoked.
2547
2548@item Install the MinGW version of zlib and make sure
2549@file{zlib.h} and @file{libz.dll.a} are in
2550MinGW's default header and linker search paths.
2551
2552@item Extract the current version of QEMU.
2553
2554@item Start the MSYS shell (file @file{msys.bat}).
2555
2556@item Change to the QEMU directory. Launch @file{./configure} and
2557@file{make}.  If you have problems using SDL, verify that
2558@file{sdl-config} can be launched from the MSYS command line.
2559
2560@item You can install QEMU in @file{Program Files/Qemu} by typing
2561@file{make install}. Don't forget to copy @file{SDL.dll} in
2562@file{Program Files/Qemu}.
2563
2564@end itemize
2565
2566@node Cross compilation for Windows with Linux
2567@section Cross compilation for Windows with Linux
2568
2569@itemize
2570@item
2571Install the MinGW cross compilation tools available at
2572@url{http://www.mingw.org/}.
2573
2574@item Download
2575the MinGW development library of SDL 1.2.x
2576(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2577@url{http://www.libsdl.org}. Unpack it in a temporary place and
2578edit the @file{sdl-config} script so that it gives the
2579correct SDL directory when invoked.  Set up the @code{PATH} environment
2580variable so that @file{sdl-config} can be launched by
2581the QEMU configuration script.
2582
2583@item Install the MinGW version of zlib and make sure
2584@file{zlib.h} and @file{libz.dll.a} are in
2585MinGW's default header and linker search paths.
2586
2587@item
2588Configure QEMU for Windows cross compilation:
2589@example
2590PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2591@end example
2592The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2593MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2594We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2595use --cross-prefix to specify the name of the cross compiler.
2596You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2597
2598Under Fedora Linux, you can run:
2599@example
2600yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2601@end example
2602to get a suitable cross compilation environment.
2603
2604@item You can install QEMU in the installation directory by typing
2605@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2606installation directory.
2607
2608@end itemize
2609
2610Wine can be used to launch the resulting qemu.exe compiled for Win32.
2611
2612@node Mac OS X
2613@section Mac OS X
2614
2615The Mac OS X patches are not fully merged in QEMU, so you should look
2616at the QEMU mailing list archive to have all the necessary
2617information.
2618
2619@node Make targets
2620@section Make targets
2621
2622@table @code
2623
2624@item make
2625@item make all
2626Make everything which is typically needed.
2627
2628@item install
2629TODO
2630
2631@item install-doc
2632TODO
2633
2634@item make clean
2635Remove most files which were built during make.
2636
2637@item make distclean
2638Remove everything which was built during make.
2639
2640@item make dvi
2641@item make html
2642@item make info
2643@item make pdf
2644Create documentation in dvi, html, info or pdf format.
2645
2646@item make cscope
2647TODO
2648
2649@item make defconfig
2650(Re-)create some build configuration files.
2651User made changes will be overwritten.
2652
2653@item tar
2654@item tarbin
2655TODO
2656
2657@end table
2658
2659@node License
2660@appendix License
2661
2662QEMU is a trademark of Fabrice Bellard.
2663
2664QEMU is released under the GNU General Public License (TODO: add link).
2665Parts of QEMU have specific licenses, see file LICENSE.
2666
2667TODO (refer to file LICENSE, include it, include the GPL?)
2668
2669@node Index
2670@appendix Index
2671@menu
2672* Concept Index::
2673* Function Index::
2674* Keystroke Index::
2675* Program Index::
2676* Data Type Index::
2677* Variable Index::
2678@end menu
2679
2680@node Concept Index
2681@section Concept Index
2682This is the main index. Should we combine all keywords in one index? TODO
2683@printindex cp
2684
2685@node Function Index
2686@section Function Index
2687This index could be used for command line options and monitor functions.
2688@printindex fn
2689
2690@node Keystroke Index
2691@section Keystroke Index
2692
2693This is a list of all keystrokes which have a special function
2694in system emulation.
2695
2696@printindex ky
2697
2698@node Program Index
2699@section Program Index
2700@printindex pg
2701
2702@node Data Type Index
2703@section Data Type Index
2704
2705This index could be used for qdev device names and options.
2706
2707@printindex tp
2708
2709@node Variable Index
2710@section Variable Index
2711@printindex vr
2712
2713@bye
2714